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Abstract
This paper, based on a real world case study (Limmat aquifer, Switzerland), compares inverse groundwater

flow models calibrated with specified numbers of monitoring head locations. These models are updated in real time
with the ensemble Kalman filter (EnKF) and the prediction improvement is assessed in relation to the amount of
monitoring locations used for calibration and updating. The prediction errors of the models calibrated in transient
state are smaller if the amount of monitoring locations used for the calibration is larger. For highly dynamic
groundwater flow systems a transient calibration is recommended as a model calibrated in steady state can lead to
worse results than a noncalibrated model with a well-chosen uniform conductivity. The model predictions can be
improved further with the assimilation of new measurement data from on-line sensors with the EnKF. Within all
the studied models the reduction of 1-day hydraulic head prediction error (in terms of mean absolute error [MAE])
with EnKF lies between 31% (assimilation of head data from 5 locations) and 72% (assimilation of head data from
85 locations). The largest prediction improvements are expected for models that were calibrated with only a limited
amount of historical information. It is worthwhile to update the model even with few monitoring locations as it
seems that the error reduction with EnKF decreases exponentially with the amount of monitoring locations used.
These results prove the feasibility of data assimilation with EnKF also for a real world case and show that
improved predictions of groundwater levels can be obtained.

Introduction
Predictions of groundwater flow and mass transport in

the subsurface are strongly affected by uncertain proper-
ties like hydraulic conductivity. In general, only a limited
amount of hydraulic conductivity data is available because
the drilling of a borehole is an expensive and invasive
technique that disturbs the investigated medium. An alter-
native is noninvasive geophysical techniques (Kowalsky
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et al. 2004; Rubin and Hubbard 2005; Rings et al. 2010),
but these techniques do not yet allow the determination
of hydraulic conductivities at large scales. An alterna-
tive way to reduce the uncertainty of groundwater flow
and mass transport predictions is the incorporation of
hydraulic head data. These allow an improved characteri-
zation of aquifer properties such as, for example, hydraulic
conductivities (de Marsily 1978; Kitanidis and Vomvoris
1983; Carrera and Neuman 1986; La Venue et al. 1995;
Gómez-Hernández et al. 1997; Yeh and Liu 2000; Tonkin
and Doherty 2005; Alcolea et al. 2006). Recent overviews
are given by Carrera et al. (2005) and Hendricks-Franssen
et al. (2009).

Inverse modeling techniques are used to cali-
brate model parameters (e.g., hydraulic conductivity) by
incorporating historical data. However, calibrated ground-
water flow models deviate from reality if these models are
not corrected with new measurement data in real time.
This occurs because inverse modeling only improves the
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characterization of aquifer properties to a limited extent
because of uncertain boundary conditions and forcings and
because the aquifer is subject to different flow situations
that might not have occurred in the calibration period.
Inverse calibrated groundwater models are less suited to
deal with on-line measurements and with time-varying
parameters in the context of real-time forecasting. Param-
eters need to be recalibrated over historical time series
and the CPU time needed for the reassessment of model
parameters is in general elevated, particularly for large
coupled surface-subsurface models.

For improved predictions in real time it is impor-
tant to update models calibrated using inverse methods
with new measurement data that become available in real
time. Here it is proposed to do this with the help of the
ensemble Kalman filter (EnKF) (Evensen 1994; Burgers
et al. 1998). The model states are updated with mea-
surements and the prediction uncertainty can be assessed
from an ensemble of stochastic realizations. Data assimi-
lation techniques can indeed incorporate different sources
of uncertainty in a more flexible manner than inverse
models (Hendricks-Franssen and Kinzelbach 2008, 2009).
The EnKF seems to be the most adapted approach for
a large-size hydrological problem. For small-size linear
problems, numerical models can be updated with the clas-
sical Kalman filtering in real time (Van Geer et al. 1991).
The extended Kalman Filter is able to handle nonlin-
earities, but is not very suited for large-scale problems
(Evensen 1992).

The intent of this paper is to evaluate how the real-
time assimilation of hydraulic head data (with EnKF)
improves groundwater model predictions. This analysis
will be made for models calibrated using inverse methods
that are already conditioned to different amounts of
(historical) information. Therefore, the capacity of EnKF
to improve model predictions will be evaluated as a
function of the amount of historical head information
contained in the calibration.

An important aspect of this study is that it is based
on data from a complex real world case study as almost
all published studies relied on synthetic cases (Chen and
Zhang 2006; Hendricks-Franssen and Kinzelbach 2008,
2009; Nowak 2009), which in most cases implied that
all sources of uncertainty, except the parameter uncer-
tainty, were excluded from the analysis. Liu et al. (2008)
applied the EnKF in a real world application, namely on
the MADE site. Furthermore, our study includes surface-
groundwater interactions, which is new as compared to
studies published before, and a verification of the data
assimilation is provided based on a large number of
monitoring stations. This study uses a three-dimensional
(3D) groundwater flow model of a strongly heteroge-
neous aquifer located in the Limmat Valley in Switzerland.
Eighty-seven monitoring hydraulic head locations allow
to run several scenarios with specified sets of monitor-
ing locations. The hydraulic head predictions obtained
with models calibrated using inverse methods and the
prediction improvement brought by the EnKF are eval-
uated in relation to the amount of monitoring locations

used for the calibration and/or the data assimilation. The
three studied types of scenarios represent an increase of
the a priori historical information used in the model cal-
ibration. In the first scenario (M1), the groundwater flow
model is run with a uniform hydraulic conductivity esti-
mated from previous knowledge (i.e., averaging the results
from different small-scale pumping tests). For the second
scenario, a steady-state inverse calibration is performed
using all the available knowledge (scenario M2). For the
third scenario, several transient inverse calibrations are
run using different amounts of monitoring locations (sce-
nario M3). All these scenarios are then updated with the
EnKF using alternatively 0, 5, 20, 43, and 85 monitoring
locations.

Case Study and Measurement Data
The study site (about 6.5 × 1 km) is located in the

Limmat Valley in Zurich (Switzerland, Figure 1). It is
delimited by the Sihl River at its south-eastern part and
by the Limmat River at its northern part. The modeled
domain is limited by the aquifer edges except for the west-
ern boundary. The public water supply of Zurich is located
close to the river Limmat.

Hydrogeology
Information on the aquifer properties is available

from a large number of boreholes. The aquifer consists of
Sihl brash and moraine matter from Würm glaciers and
is characterized by a high heterogeneity. The upper layer
consists mainly of gravel and has a high permeability.
With increasing depth the Limmat Valley brash becomes
relatively less permeable and sandier, with less gravel
and more silt. The bedrock is made up of molasse. The
thickness of the aquifer varies up to 70 m with an average
around 20 m.

The aquifer has no hydraulic connection to Lake
Zurich. Infiltration from the rivers Limmat and Sihl is the
main source of groundwater. The river-aquifer interaction
occurs at different scales and is time and space dependent.
Doppler et al. (2007) showed that the leakage coefficient
is temporally variable related to flood events. They also
suggested that the temperature dependence of the leakage
coefficient has to be considered for modeling river-aquifer
interactions. Engeler et al. (2011) confirmed this by com-
paring coupled simulations of 3D groundwater flow and
heat transport with uncoupled simulations. The temporal
variations of the leakage coefficient are neglected in this
study. The recharge due to precipitation is small, because a
large part of the model domain is urbanized with mainly
impervious area, and there is some lateral inflow from
the hills located north and south of the study area. The
Limmat River is first impounded at the junction point with
the Sihl River and also near to the location of the Hardhof
Water Works (Hoengg weir). These dams increase locally
the groundwater-surface water exchange.

Usually the groundwater flows parallel to the valley
axis. Along the Limmat River water exchange between
groundwater and surface water occurs. This causes
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Figure 1. The small embedded figure shows Switzerland and the location of the study area (black circle). Otherwise, the study
site (black lines) corresponds to the boundaries of the simulated area in the upper Limmat Valley in Zurich (Switzerland).
The Sihl and Limmat Rivers are delimited by the blue lines. The points in the mid-part of the site represent the wells and
infiltration basins of the Hardhof Water Works.

deviations in the flow direction. The groundwater surface
gradient varies between 1‰ and 6‰ (Kempf et al. 1986).

Hardhof Water Works
About 20% of the drinking water of Zurich is

pumped at the Hardhof Water Works. Figure 2 shows a
scheme of the Hardhof Water Works, the water supply
of Zurich. Water is pumped in 19 bank filtration wells
along the Limmat River (10 m from the bank) and re-
infiltrated by means of three infiltration basins and 12
wells. The 12 recharge wells have an individual capac-
ity of 12,000 L/min. This artificial recharge improves the
groundwater quality through filtration and bioactivity in
the soil. The artificially recharged water also helps to cre-
ate a hydraulic barrier whose goal is to minimize the risk
of contamination in case of accidents on the motorway or
on the railway (oil and chemical transport) and to divert
away contaminated groundwater from the pumping wells.
Groundwater below the city center is contaminated due
to historical dump sites. The drinking water is pumped
by four production wells with an individual maximum
capacity of 36,000 L/min.

Available Data
A dense groundwater monitoring network (87 moni-

toring locations of hydraulic head, most of them located
in the area of the Hardhof Water Works; Figure 3) is
available in the study area. Daily mean groundwater
hydraulic heads are recorded with an estimated error

standard deviation of 5 cm. This error was estimated by
practitioners, taking into account sinking of the bore-
hole, errors in the reference height, and small errors
in the measurement itself. As convention the locations
used for model calibration or real-time data assimilation
are called measurement locations and the locations only
used to evaluate the model predictions are called control
locations.

Also daily amounts of pumped and artificially
recharged water in each of the basins and wells
in the Hardhof area, daily meteorological data from
Zurich-Affoltern, and daily mean discharge values of the
rivers Sihl and Limmat were available. The mean precip-
itation at Zurich-Affoltern, averaged over the period 1961
to 1990 is 1042 mm/year (MeteoSchweiz 2009). The aver-
age discharge of the Sihl River is 6.81 m3/s and for the
Limmat River it is 95.8 m3/s. These averages are calcu-
lated from a time series of 70 years (Swiss Federal Office
for Environment 2008).

Methodology

Model Calibration with SPRING (Inverse Modeling)
For the inverse modeling studies, hydraulic conduc-

tivities and leakage coefficients were calibrated with the
pilot point approach (de Marsily 1978) as implemented
in the software SPRING (Delta h, Ingenieurgesellschaft
GmbH 2006) using the Levenberg-Marquard method.
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Figure 2. Scheme of the Hardhof Water Works (from Doppler et al. 2007). The arrow represents the river flow direction.

Figure 3. Location of the sets of measurement locations used
for calibration and data assimilation (EnKF). The locations
marked by × correspond to the set of 5 measurement
locations; the locations marked by + and × to the set of 20
measurement locations; the locations marked by �, +, and
× to the set of 43 measurement locations; and the locations
marked by ©, �, +, and × to the set of 85 measurement
locations.

The pilot point method poses the inverse problem as
a multiobjective optimization problem where the objec-
tive function contains two terms: one for the mismatch
of the hydraulic heads and one for differences between
prior parameter values and updated parameter values. This
objective function is minimized with respect to a limited
number of parameters. In our case, these are the hydraulic
conductivities at some selected locations, the so-called

pilot points, and leakage coefficients for a number of
zones. The hydraulic conductivities are not only updated
at the pilot points, but also at the other elements of the
model on the basis of geostatistical interpolation using
a Gaussian variogram. The objective function that has
been used includes a plausibility term, whose impor-
tance was stressed by Alcolea et al. (2006). It would
have been preferable to generate multiple equally likely
solutions to the inverse transient groundwater flow prob-
lem, for example, with the sequential self-calibration
method (SSC) (Gómez-Hernández et al. 1997; Hendricks-
Franssen et al. 1999), but this was not possible in this
case, as SSC has not been implemented in a software for
unsaturated flow conditions and river-aquifer interactions.

Ensemble Kalman Filter
Data assimilation optimally combines model predic-

tions on one hand and measurement data on the other hand
to get updated model predictions that honor recent mea-
surement data. In the EnKF this is done by minimizing
the a posteriori error covariance (the error between the
predictions and measurements). The EnKF consists of the
following steps:

1. The groundwater flow model is used to predict for time
step t = 1 the groundwater levels. Necessary inputs for
these predictions are the initial states (hydraulic heads
at t = 0), predicted forcings (groundwater recharge,
river stages, and lateral inflows), and additional static
and dynamic model parameters. The ensemble Kalman
method relies on solving the groundwater flow model
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many times (100 in our case). In principle, any
input parameter or model forcing can be modeled as
stochastic. In this study, hydraulic conductivity and
leakage coefficient were the uncertain parameters. This
was concluded from simulation experiments where
the different uncertain parameters (also recharge rate
and lateral inflow) were varied in a realistic uncer-
tainty range. The uncertainty of these parameters is
quantified with the help of statistical models, in the
case of hydraulic conductivity with the help of a
multi-Gaussian geostatistical model. With this statis-
tical model different equally likely spatial distributions
of hydraulic conductivity and leakage coefficient are
generated, which are input to the numerical ground-
water flow model. The stochastic realizations of
hydraulic conductivity are generated with GCOSIM3D
(Gómez-Hernández and Journel 1993) on a very fine
grid and upscaled to the size of the finite elements grid
using simplified renormalization (Renard et al. 2000).
Stochastic realizations of leakage coefficients are gen-
erated by sampling randomly and independently for
each of five leakage zones from a log-normal distribu-
tion of the leakage coefficient. The piezometric head
predictions for each of these stochastic realizations will
differ. The states covariance matrix C can be calculated
on the basis of these different head predictions.

2. It is assumed now that at the time step (t = 1) mea-
surement data and an estimate of their uncertainties
are available. An ensemble of 100 measurement
realizations is computed by perturbing the current
measurements with a stochastic term drawn from a nor-
mal distribution with mean equal to zero and variance
equal to the expected measurement uncertainty.
The measurement data are used to update the model
predictions with the following equation:

x+ = x0 + K(y − Hx0) (1)

where x is a vector containing the piezometric heads
at the model nodes. Index “+” stands for an updated
vector and index “0” stands for the actual state
predictions. Vector y contains the measurement data.
Matrix H relates the modeled heads to the measured
heads. Matrix K stands for the “Kalman gain”
and contains optimized weights of model prediction
values and measurement values. The Kalman gain is
calculated with

K = CHT(HCHT + R)−1 (2)

Matrix R contains the covariances of the errors of
the measurement data. Equation 2 implies the optimal
weighting of model-state prediction and measurement
values at every model node. All 100 model runs are
updated with the help of the Equations 1 and 2.
The EnKF can also update the parameters such as
hydraulic conductivity and leakage coefficient besides
the hydraulic head but this was not applied in this
study.

3. The results of 100 updated piezometric head distribu-
tions are used as initial states for the model runs of the
next time step.

The ensemble prediction at each time step may
represent the prediction uncertainty. The ensemble size of
100 was chosen to limit the needed CPU time and RAM
requirements, although results could have been somewhat
better for a larger number of stochastic realizations
(Hendricks-Franssen and Kinzelbach 2008).

Numerical Model
A numerical model for 3D variably saturated

groundwater flow including river-aquifer interactions was
implemented for the study area. The model was coupled
with the software EnKF3d-SPRING (software develop-
ment by H.-J. Hendricks-Franssen, programmed in C) for
assimilation of hydraulic head data and real-time modeling
with the EnKF.

The grid has a size of 50 m (in the horizontal direc-
tion) and is refined around the wells up to 1 m. The aquifer
is discretized into 25 layers of 1.6 m thickness, which
resulted in a total of 173,599 finite elements (triangular
prisms). The time step is set to 1 day with two iterations
per time step.

The model boundaries correspond to the aquifer edge
except for the western boundary, which is a time-varying
prescribed head boundary condition. The hydraulic head
value for this boundary is taken from a monitoring loca-
tion situated on the boundary. The southern and northern
boundaries are prescribed flux boundaries, with fluxes
that are variable in space and equal to zero for large
parts of the northern boundary. The rivers Sihl and Lim-
mat form the eastern and north-eastern boundaries of the
model.

The river is modeled by two lines of leakage nodes.
For the period January 2004 to August 2005 (for cali-
bration period, refer section on “Studied Scenarios and
Evaluation Measures”) the daily mean river stage was
computed at each leakage node with the help of the
hydraulic software FLORIS (Reichel and Fäh 1995)
and used as input for SPRING. The relation between
the discharge and river stage (for each of the leakage
nodes), as obtained from FLORIS, was fitted with a
quadratic regression equation. River stage values for the
rest of the simulation period (September 2005 to August
2006; verification period) were obtained from the derived
quadratic regression relations and also used as input for
SPRING (Doppler et al. 2007). In the simulations pre-
sented here, temporal variability of the leakage coefficient
was neglected. Five leakage zones were defined, accord-
ing to hydraulic considerations (e.g., dams, river junction,
and bifurcation; Figure 4).

The recharge is computed from the difference be-
tween the precipitation and the actual evapotranspiration,
the latter being estimated from the potential evapotran-
spiration and a soil-water balance model. The potential
evapotranspiration is calculated with the Penman-Monteith
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Figure 4. Position of the five leakage zones, the measurement locations (red dots), the set of 5 pilot points used for the
calibration of M3a and M3b (×), and the set of 16 pilot points used for the calibration of M3c (©) (Table 1).

method, described in Allen et al. (1998), using meteoro-
logical data observed in Zurich-Affoltern as input. The
soil-water balance model assumes that the soil is a simple
reservoir which is filled by rainfall and from which water
can disappear by surface runoff, evapotranspiration, and
deep drainage. We estimated the water holding capacity
of the soils in the study area from soil-water retention
curves (Koorevaar et al. 1983). If the field capacity is
exceeded, excess water is drained to the groundwater
(recharge). Depending on the soil moisture content, the
actual evapotranspiration might be (much) smaller than
the potential evapotranspiration, this is especially the case
if the soil moisture content approximates the wilting point
(Allen et al. 1998). The recharge is also used to determine
the lateral inflows from the surrounding hills under the
assumption that they are caused by excess precipitation
(precipitation minus actual evapotranspiration), as shown
by Doppler et al. (2007).

The next section describes how hydraulic con-
ductivity and leakage coefficient were estimated for
each scenario using inverse modeling or limited prior
knowledge.

Studied Scenarios and Evaluation Measures

Scenarios and Calibration
Five different scenarios, with different amounts of

historical information, are considered. Table 1 summa-
rizes the characteristics of these calibration scenarios.

In the first scenario M1, we assumed that enough
information (geology, pumping, and slug tests) was
available to estimate an average K value reliably and that
also roughly correct estimates of leakage coefficients were
possible, but that no model calibration could be made
because the number of hydraulic head data is too limited.
The uniform hydraulic conductivity value K for M1 was
2.4 × 10−3 m/s and the estimated leakage coefficients are
given in Table 2.

For the second scenario M2, the model was calibrated
at steady state with hydraulic heads from 80 measurement
locations averaged over March 2001, 110 pilot points, and
5 leakage zones. The pilot points were laid out in cor-
respondence with the available information on hydraulic
heads, with a denser network in the Hardhof area and
fewer points in the rest of the study area. The model

Table 1
Overview of the Different Simulation Scenarios, Number of Measurement Locations (87 Are Available),

Total Number of Data (Number of Measurement Locations × the Number of Data Available Over Time),
Pilot Points, and Leakage Zones Used for the Calibration

Scenarios Calibration
Measurement

Locations
Total Number

of Data Pilot Points Leakage Zones

M1 No calibration — — — —
M2 Steady state 80 80 110 5
M3a Transient 5 330 5 5
M3b Transient 20 1320 5 5
M3c Transient 87 5742 16 5
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Table 2
Leakage Coefficients (10−3 m/s) of the Five

Leakage Zones for the Different Scenarios (After
Calibration for M2, M3a, M3b, and M3c)

Leakage Zones

Scenarios 1 2 3 4 5

M1 0.0010 0.1000 0.1000 1.0000 0.0100
M2 0.0006 0.0360 0.0429 0.5400 0.0049
M3a 2.5180 0.2820 0.0300 0.3430 0.0750
M3b 9.3710 0.9670 0.1050 0.0180 0.0180
M3c 0.0430 0.0309 0.1322 1.1045 0.0036

forcings for the calibration of M2 (recharge, river stages,
lateral inflows, pumping, and artificial recharge) were also
computed to be representative of the steady-state condi-
tions. This was achieved by calculating long-term average
recharge and lateral inflow on the basis of the same pro-
cedure as outlined before. Rivers stages, pumping, and
artificial recharge were determined by averaging the cal-
culated (in case of the river stages) or the measured (in
case of the pumping and artificial recharge) daily values
over March 2001. As explained before, the calibration was
carried out using the pilot point method and the repro-
duction of the head was balanced with the perturbation of
the hydraulic conductivity and leakage coefficient (Carrera
and Neuman 1986; Alcolea et al. 2006).

The model was also calibrated in transient state (sce-
nario of type M3) with different sets of measurement loca-
tions and pilot points (Table 1). The model is calibrated
only with hydraulic heads of June 2004 and July 2005,
but we will refer to the period January 2004 to August
2005 as calibration period. It was found that the 2-month
calibration period also exerts a strong control on the cor-
rect reproduction of the hydraulic heads between these
calibration months and also on the period between the
(deterministic) initial conditions and the first calibration
month. These months were chosen as they are represen-
tative of the hydraulic and management conditions of the
study site. They include a high water table period caused
by a flood event in June 2004 as well as a low water table
due to high pumping rates in the production wells in July
2005. In the calibration months, also larger periods with
average conditions occur. Also in this case the calibration
was done with the pilot point method, balancing again the
reproduction of the hydraulic heads and the modification
of the parameters according to the variances of the states
and parameters.

Simulation and EnKF
EnKF uses as input stochastic realizations of the

hydraulic conductivity and leakage coefficient. Each of
the scenarios uses a different set of stochastic realizations,
consistent with the calibration results. For M1, uncon-
ditional stochastic realizations of hydraulic conductivity
and leakage coefficient are generated. For the models M2
and M3, stochastic realizations of hydraulic conductivity

and leakage coefficient are generated on the basis of the
calibrated values (obtained with the pilot point method)
plus a perturbation. The perturbations are created on the
basis of the posterior statistics from the calibration.

For each of the scenarios the model was first run in
transient state from January 1, 2004 until August 31, 2005
(calibration period, 609 days) using the same forcings for
all models as described in the section on “Numerical
Model.” The hydraulic heads at the end of the simulation
over the calibration period were used as starting heads for
the simulation in the verification period (from September
1, 2005 to August 31, 2006, 365 days). The EnKF
assimilates daily new hydraulic head data and predictions
are made with the help of the 100 realizations for the
next day (the 99 stochastic realizations and the model
calibrated with the pilot point method) as described in the
section on “Methodology.” In these experiments the EnKF
only updates the states (i.e., the hydraulic heads) using
different amounts of measurement data as a function of
the scenarios. For example, M3b 20 is the scenario M3b
that assimilates daily 20 measurement data with the EnKF
(see Table 3 for an overview of the runs with EnKF).

Four sets of measurement data containing 5, 20, 43,
or 85 measurement locations were chosen in a way that
they are spread out over the whole area. Like the original
data set with 85 data, these measurement locations focus
on the Hardhof area, with fewer samples in the rest of the
model domain. The Hardhof area is most strongly affected
by changes in groundwater level due to the pumping and
artificial recharge activities (Figure 4).

Model Evaluation
The scenarios are evaluated in terms of the charac-

terization of the hydraulic heads with the deterministic
model. The following deviance measures were evaluated:
the MAE, the mean error (ME), the Nash-Sutcliffe effi-
ciency criterion (NSE) (Nash and Sutcliffe 1970), and the
hydrological deviation (D) according to Schultz (1967)
(Equation 3). These deviance measures can be computed
for all the considered monitoring locations at one time

Table 3
Overview of the Sequential Data Assimilation
Scenarios for the Verification Period with the

Different Number of Hydraulic Head
Measurement Locations

No. of
Measurement
Locations M1 M2 M3a M3b M3c

0 M1 00 M2 00 M3a 00 M3b 00 M3c 00
5 M1 05 — M3a 05 — —
20 M1 20 — — M3b 20 —
43 M1 43 — — — M3c 43
85 M1 85 M2 85 — — M3c 85

Note: The entries in the table are the names for the different simulation
scenarios.
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step t [notation MAE(t)] or for one particular location
h over all the time steps [notation MAE(h)]. They can
be averaged over all the locations and all the time steps
(notation: average MAE = AMAE, average ME = AME,
average NSE = ANSE, averageD = AD).

D = 200

∑N
i=1 |hi − ĥi |ĥi

N · max(ĥi)
(3)

where hi represents a measurement and ĥi a model
prediction.

The NSE criterion indicates how much of the
variability in observations is explained by the simulations.
NSE varies between 1 and minus infinity, where NSE = 1
represents a perfect fit. Because of the squared differences,
however, NSE is exceedingly sensitive to extreme values.
The Schultz criterion varies between 0 (best fit) and
infinity. It is best used for event analyses at fine temporal
resolution (e.g., daily resolution).

It is of interest to assess how much the assimila-
tion of new measurement data with EnKF can reduce
the prediction error within a scenario. For this rea-
son, the relative (�rAMAE, Equation 4) and absolute
(�aAMAE, Equation 5) variations of the averaged mean
absolute error (AMAE) between a scenario run with data
assimilation and an unconditional run (without data assim-
ilation) were computed as follows:

�rAMAE(Mx yy) = AMAE(Mx yy) − AMAE(Mx 00)

AMAE(Mx 00)

(4)

�aAMAE(Mx yy) = AMAE(Mx yy) − AMAE(Mx 00)

(5)

with AMAE(Mx yy) the AMAE for the scenario Mx
updated with hydraulic heads from yy measurement
locations.

Results and Discussion

Results for the Calibration and Verification Period
for Each Scenario Without Data Assimilation

We start with presenting results for the calibration
period and the verification of the calibrated models for
the additional simulation period of 1 year (without real-
time updating of the model). The results of the model
predictions cannot be interpreted solely as a function of
the number of measurement locations because the results
of the calibration (different parameters) and calibration
characteristics (pilot points) play a role as well.

Figure 5 displays the spatial distributions of the
hydraulic conductivities for layer 5 (at 7.2 m depth) of
the calibrated models. All models show a spatially smooth
distribution of hydraulic conductivity, but M2 shows a
wider range of hydraulic conductivities and more impor-
tant local variations, probably related to instabilities in
the calibration. From M3a to M3c, the standard devia-
tion of the calibrated hydraulic conductivities increases.

This is related to the fact that the model M3c uses more
conditioning data and therefore better captures the spatial
variability.

The averaged Nash-Sutcliffe efficiency (ANSE), the
averaged Schultz deviation criterion (AD), and the AMAE
provide the same model ranking with respect to the ME
(Table 4). On average all the scenarios overestimate the
hydraulic heads (averaged mean error [AME] negative)
except M3b and M3c for the calibration period. For the
calibration period, the ranking of the scenarios (from the
best to the worst) is M3c > M3b > M3a > M1 > M2.
For the verification period the ranking changes only for
M3a and M1 (M1 > M3a). The model calibrated in tran-
sient state with much information (scenario M3c) shows
the best results and has almost a perfect compensation
of the residuals. M2 and M3a exhibit much larger errors
for the verification period (compared with the calibration
period), whereas for the other scenarios the errors in the
verification are not so much larger than during the cali-
bration period.

The model M2, calibrated in steady state, has a
worse performance than the noncalibrated model M1
(except for AME), which was not calibrated and used
a uniform hydraulic conductivity. This is, in particular,
the case for the verification period. The choice of the
uniform hydraulic conductivity value for the model M1
and the input data and the number/location of the pilot
points for the steady-state calibration of M2 influence
the results. However, Alcolea et al. (2006) showed that
for a properly regularized inverse problem, the number
of pilot points can be much larger than the number of
measurements, without negative effects on the parameter
estimation. However, in this study for M2 some very low
calibrated hydraulic conductivities point to the fact that the
calibration was maybe not very stable. Therefore, the bad
performance of M2 seems to be related to more than just
a steady-state flow model. In the literature groundwater
flow models are often calibrated in steady state. For
dynamic aquifers strongly influenced by interactions with
streams, results from a transient calibration seem to
be very superior over the ones from a steady-state
calibration. The transient changes of the river stage, whose
response is observed in the aquifer, provide important
information on the hydraulic conductivities of the aquifer
(Yeh et al. 2009).

For the calibration and verification periods, the
scenarios of type M3 have a smaller error as the number
of measurement locations (and the number of pilot points)
increases. The transient calibration exhibits better results
when more measurement locations are involved, in both
the calibration and verification period. The models M3a
and M3b present very large calibrated leakage coefficients
for the leakage zone 1 (Table 2). In the vicinity of this
leakage zone the measurement locations with the largest
prediction errors are situated.

Figure 6 illustrates the evolution of MAE with
time. It can be seen that from the beginning of the
verification period onward MAE is larger than during
the calibration period. The MAE also shows stronger
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Figure 5. Spatial distributions of the hydraulic conductivities (at model layer 5 at 7.2 m depth) of the calibrated models.

variations during the verification period and the difference
between the models is larger during the verification
period, as compared with the calibration period. This
illustrates once more that the calibration quality and
prediction quality might be very different (Freyberg
1988).

Only M2 varies already strongly at the end of the
calibration period. For the calibration period, M1 and M2
show very similar patterns, whereas for the verification
period, M1 shows similar error patterns as M3c (just
shifted) while M2, M3a, and M3b also have similar
temporal error patterns. The similar temporal error pattern
is at least in part related to the assumption of temporally

constant leakage coefficients in all models. Other stud-
ies (Doppler et al. 2007) showed that the leakage coef-
ficient is temporally variable related to flood events and
temperature.

Results for the Verification Period (Unconditional Runs
and EnKF)

It is useful to compare the improvement of data
assimilation for the different scenarios. For the results
presented here, EnKF was always able to yield better
predictions than unconditional model runs. The AMAE
decreases exponentially as a function of the number of
assimilated data. The strongest decrease is observed for

NGWA.org E. Huber et al. GROUND WATER 9



Table 4
Efficiency Criteria Averaged Over Calibration

Period and the Verification Period

ANSE (−) AD (−) AME (m) AMAE (m)

Calibration
M1 0.76 135 −0.60 0.68
M2 0.69 136 −0.30 0.69
M3a 0.81 105 −0.38 0.53
M3b 0.89 77 0.33 0.39
M3c 0.95 44 0.00 0.22

Verification
M1 00 0.63 173 −0.81 0.87
M2 00 −0.19 297 −1.19 1.50
M3a 00 0.30 247 −1.23 1.25
M3b 00 0.75 148 −0.55 0.75
M3c 00 0.93 71 −0.18 0.36

Note: During the verification period no data were assimilated.

M1, the scenario with the largest improvement potential
(Figure 7).

The EnKF resulted in stronger improvements if the
model calibration was based on few data (that means
if the calibrated model performed worse). For models
that were calibrated with many data, additional informa-
tion is needed for the reduction of the prediction errors
as compared with models that were calibrated with less
data. For the same prediction error reduction �rAMAE of
28%, M1 00 needed to be updated with 5 measurement
locations (M1 05), whereas M3 00 needed 43 additional
data. However, the model ranking is stable: M3c performs
better than M2 and M1 if it uses the same amount of
measurement locations for assimilation.

Evaluation of the Performance of EnKF at Control
Locations

To assess if the EnKF also improves the charac-
terization of the hydraulic heads at locations that are

Figure 6. Variation of MAE(t ) of the calibrated models with time. The calibration period stretches from January 2004 to
August 2005 with calibration for the months of June 2004 and July 2005 (represented in the figure with gray bars). The
verification period covers the period from September 2005 until August 2006. The beginning of the verification period is
represented by a vertical line (Day 609).

(A) (B)

Figure 7. AMAE (A) and relative variation of AMAE (B) of scenarios M1, M2, and M3c as a function of the number of
measurement locations used for data assimilation (verification period). The AMAE is computed using the 85 locations and the
AMAE of the unconditional scenarios (M1 00, M2 00, and M3c 00) serve as references for the relative variation of AMAE.
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not used for assimilation (control locations), the relative
and absolute variations of MAE(h) for each location are
computed and separately averaged over the measurement
locations and the control locations.

The prediction error is reduced by the EnKF not
only at the measurement locations but also at the con-
trol locations (at least 25% error reduction; Figure 8). On
average, the measurement locations (which are used for
data assimilation) show a larger improvement in predic-
tion than the control locations. However, this difference
in AMAE between the measurement and control locations
decreases with the number of measurement locations. For
the scenario M1, the difference is 0.10 m for the assimila-
tion of measurement data from 5 locations, 0.08 m for 20
measurement locations, and only 0.03 m for 43 locations.
These results show that the EnKF not only updates the
hydraulic head successfully at the measurement locations,
but also between the measurement locations (at the control

locations). If data from more measurement locations are
used in the assimilation, the spatial distance between the
control locations and measurement locations is on average
smaller, and the hydraulic head will be more strongly cor-
related between verification and measurement locations.
As a consequence, in the case of a denser monitoring
network the correcting influence of the measurement loca-
tions on the control locations is stronger than for a less
dense monitoring network. The EnKF does not improve
the prediction at all the locations. Few locations (including
both measurement and control locations) present a slightly
worse prediction with data assimilation. For these loca-
tions the EnKF could not find a satisfying solution that
handles the measurement value together with the other
constraints (from the model and other conditioning data).
This might point to an erroneous measurement value or
other model errors (e.g., wrong conceptualization of geol-
ogy and erroneous pumping data). This suspicion is also

Figure 8. Relative variation of MAE(h) [�rMAE(h)] computed for each location of each scenario over the verification period
(EnKF). The mean �rMAE(h) for the measurement locations (ml) and the control locations (cl) is represented with horizontal
red lines. The absolute (m) and relative (%) variation of MAE(h) averaged over the ml and over the cl are written above the
strip chart of ml and cl in each box.
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raised by having a closer look at Figure 8. The calculated
MAE(h) are strongly skewed for almost all scenarios.
At most of the measurement points the improvement is
considerable, while at a few measurement locations the
prediction does not improve or even becomes worse.

The prediction error reductions are smaller than
or equal to the ones found in synthetic experiments
(Hendricks-Franssen and Kinzelbach 2008, 2009). In
those synthetic experiments and for a similar heterogene-
ity, at control locations an AMAE reduction of around
65% was found; here between 31% (M1 05) and 50%
(M1 43). It is a common observation that the results
obtained in synthetic experiments are better than the ones
found in real world case studies. This is because in real
world studies the adopted geostatistical model is not the
same as the “true” geostatistical model and maybe the sta-
tionarity assumption is not well suited for the study area.
Other reasons can be an erroneous model conceptualiza-
tion, erroneous measurement data, and erroneous data on
model forcings.

Comparison of Inverse Modeling and EnKF
These results show that even if a model is calibrated,

it is important to assimilate new measurement data that
become available in real time for better predictions. This
is illustrated by comparing results for the scenarios M1 05
(no historical calibration, assimilation of data from five
locations) and M3a 00 (calibrated with historical data
from five measurement locations, no assimilation), as well
as M1 20 and M3b 00 (similar, for 20 data). Table 5 sum-
marizes the comparison between calibration and EnKF
and presents the AMAE for each of these scenarios. As
a reference, M1 00 has an AMAE of 0.87 m. Table 5
illustrates that calibration does not always improve the
prediction: five measurement locations (scenario M3a 00)
are not enough to catch the variability of the hydraulic
heads (43% of error increase, compared with uncondi-
tional simulations [M1 00]). The largest prediction errors
are found for measurement locations in the south-eastern
(very large calibrated leakage coefficients, see earlier dis-
cussion) and north-western part of the study site. This
reveals the importance of the quality of the calibration: too
few measurement locations representative of the hydro-
logical phenomenon result in a poor calibration. The

Table 5
Calibration and Updating of M1 with 5 and 20

Measurement Locations

Calibration Data Assimilation

5 measurement
locations

M3a 00
AMAE = 1.25 m

M1 05
AMAE = 0.60 m

20 measurement
locations

M3b 00
AMAE = 0.75 m

M1 20
AMAE = 0.49 m

Note: The corresponding scenarios and their AMAE computed over the
verification period are given (M1 00 has an AMAE of 0.87 m).

calibration with 20 measurement locations improves the
prediction (14% error reduction compared with M1 00).
However, a much better relative improvement is achieved
with the assimilation of only five measurement locations
with EnKF (31% error reduction compared with M1 00).
Figure 9 illustrates the temporal fluctuations of MAE(t)
for these different models. The MAE(t) for the calibra-
tion scenarios (M3a 00 and M3b 00) fluctuate around
the MAE(t) of M1 00, whereas the MAE(t) for the data
assimilation (scenarios M1 05 and M1 20) are always
smaller than the MAE(t) of M1 00.

These results illustrate the importance of assimilat-
ing data that become available in real time from on-line
sensors (Barnhart et al. 2010). Five or 20 measurement
locations that are assimilated in real time, for a very sim-
ple model with a uniform hydraulic conductivity, are able
to yield better predictions of the spatial distribution of
hydraulic heads over the aquifer, as compared with models
that were calibrated with the same amount of histori-
cal measurement data. Note that these inverse calibrated
models used a complete time series of hydraulic head
data to improve the model and updated parameters such
as hydraulic conductivity and leakage coefficients. Here
the EnKF was applied in a mode that did not allow the
updating of parameters. Hendricks-Franssen et al. (2011)
show that updating of hydraulic conductivities and leak-
age coefficients with the EnKF further improves the model
predictions. The update of the leakage coefficient could
be a way to integrate its temporal variability due to
flood events and temperature dependency. The compu-
tation time needed for data assimilation with EnKF (for
100 stochastic realizations) for more than 1 year was 1
week (processor: Intel Core 2 Duo E6600 with 2.40 GHz,
operating system: Linux, 3 Gb RAM), whereas the CPU
time needed for inverse calibration of a single model for
more than 2 months with five pilot points was 2 weeks
(processor: Intel Core 2 Duo E6400 with 2.13 GHz, oper-
ating system: Windows XP SP3, 2 Gb RAM). A single
forward run costs approximately 30 min.

Conclusions
A variably saturated groundwater flow model, includ-

ing stream-aquifer interaction, of the Limmat Valley
aquifer in Zurich was used to evaluate the hydraulic head
prediction errors of a model calibrated using inverse meth-
ods and data assimilation with EnKF. These errors were
evaluated as a function of the number of measurement
locations.

Concerning the calibration, it is highly recommended
to perform transient calibration instead of steady-state
calibration, for dynamic groundwater systems that show
an important interaction with streams. This is well-known
from synthetic experiments, but now also clearly shown
for a practical case with unknown error sources. A
calibration with insufficient measurement locations (e.g.,
scenario M3a, five measurement locations) can lead to
large prediction errors, which appear more accentuated
during the verification period.
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(A)

(B)

Figure 9. (A) MAE(t ) over the verification period for M1 00, M3a 00 (=M1 inverse calibrated with five measurement
locations), and M1 05 (=M1 updated with EnKF on the basis of five measurement locations). (B) MAE(t ) over the verification
period for M1 00, M3b 00 (=M1 inverse calibrated with 20 measurement locations), and M1 20 (=M1 updated EnKF on
the basis of 20 measurement locations).

Real-time hydraulic head data carry important infor-
mation that is able to improve groundwater flow model
predictions, particularly in the context of real-time
forecasting. Here the EnKF was used for real-time assim-
ilation of hydraulic head data. This was done for different
models that were calibrated with different amounts of
historical information. The reduction of 1-day hydraulic
head prediction errors with the EnKF (in terms of average
MAE) lies within all the scenarios between 31% (scenario
M1 05, noncalibrated model updated with 5 measurement
locations) and 72% (scenario M2 85, model calibrated in
steady state updated with 85 locations).

Even if data from few measurement locations
are available, it is worthwhile to use them for data
assimilation as the prediction errors seem to decrease
exponentially as a function of the number of measurement
locations. The improvement achieved by EnKF is larger
for models that showed larger prediction errors without
assimilation or, equivalently, models that were calibrated
on the basis of few data. The improvement by the EnKF
was observed at both the assimilation locations and control
locations.

The fact that it is important to assimilate measure-
ments available in real time from on-line sensors is further
illustrated having a closer look at the simulation results.
The models that were historically calibrated with 5 or
20 hydraulic head time series have (much) larger errors
for a verification period as compared with an uncalibrated
model that is supplied with 5 or 20 hydraulic head data (at
the same spatial locations as in the historically calibrated
models) in real time that are assimilated with EnKF. These
results demonstrate the feasibility of data assimilation with

EnKF for a real world case and show that improved pre-
dictions of groundwater levels can be obtained. Another
interesting aspect of EnKF is that the needed computation
time is smaller than for inverse calibration, particularly
for large-size problems.

The results shown in this paper illustrate that models
calibrated with the help of historical information profit
from the assimilation of new measurement data available
from on-line sensors. This is particularly true for models
that were calibrated with limited measurement data; they
profit (in relative terms) more from these on-line data.
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