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Hydrogeologist are commonly confronted to field data scarcity. An interesting way to compensate this
data paucity, is to use analog data. Then the questions of prediction accuracy and uncertainty assessment
when using analog data shall be raised. These questions are investigated in the current paper in the case
of contaminant transport forecasting in braided river aquifers. In using analog data from the literature,
multiple unconditional geological realizations are produced following different geological conceptual
models (Multi-Gaussian, Object-based, Pseudo-Genetic). These petrophysical realizations are tested in
a contaminant transport problem based on the MADE-II tracer experiment dataset. The simulations show
that reasonable contaminant transport predictions can be achieved using analog data. The initial
concentration conditions and location regarding the conductivity heterogeneity field have a stronger
influence on the plume behavior than the resulting equivalent permeability. The results also underline
the necessity to include a wide variety of geological conceptual models and not to restrain parameter
space exploration within each concept as long as no field data allows for conceptual model or parameter
value falsification.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The aims of this paper are to investigate if the use of analog data
allows to make (1) reasonable contaminant transport predictions
in braided river aquifers, (2) relevant uncertainty analysis, given
different geological conceptual models and limited field data
observations, and (3) to assess how the predictions are influenced
by the different geological structures resulting from the different
geological concepts.

Indeed braided river aquifers are frequent in alpine regions such
as Switzerland and constitute an important part of the tapped
water resources (FOEN, 2009). In an environment influenced by cli-
mate change (Middelkoop et al., 2001; Moeck, 2014) and under
constraints related to human activity such as infrastructures or
industries, preserving the water resources quality becomes a prior-
ity to pursue irrigation practice, drinking water supply and of
course to protect the natural ecosystems relying on this resource.
More generally, regardless of the sedimentary deposit nature, a
good understanding of groundwater flow and transport in aquifers
is necessary to manage the water resource (defining protection
perimeters around pumping wells, planning restoration projects
or planning remediation actions after a contamination).

In their review article, Sanchez-Vila et al. (2006) state that
‘‘Heterogeneity is the single most salient feature of hydrogeology’’.
Not surprisingly, how to deal with heterogeneity has therefore
been the subject of intense research (e.g. De Marsily et al., 2005)
and a broad range of models and techniques have been developed
to represent heterogeneity in groundwater models. Most of these
approaches allow not only building models of the spatial
variability but also to quantify the corresponding uncertainty and
its influence on flow and transport processes. All those aquifer
models – not limited to the braided river type – have different
characteristics and can be classified in process-imitating,
structure-imitating, or descriptive methods (Koltermann and
Gorelick, 1996).

Among the various types of aquifer models, some have been
compared through numerical experiments. For example, Teles
et al. (2004) compare the flow and transport properties in
fluvio-glacial alluvium for genesis facies models, indicator simula-
tions and an equivalent uniform medium. dell’Arciprete et al.
(2012) show through a comparison between sequential indicator,
transition probability and Multiple-Point Statistics (MPS) simula-
tions, that the most realistic geological realizations of alluvial sed-
iments are obtained when facies details are simulated within
quifers.
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previously established structural elements. Many experiments
have also been conducted for other types of environments (Zinn
and Harvey, 2003; Falivene et al., 2006; Lee et al., 2007; Zhang
et al., 2013; Siirila-Woodburn and Maxwell, 2015). In general, the
main objective of all these studies was to compare the flow and
transport properties (equivalent conductivity, macrodispersivity,
etc.) resulting from various heterogeneity models. An important
conclusion from these comparisons is that the choice of a given
conceptual heterogeneity or conceptual geological model has in
general a larger impact on the transport properties than the vari-
ability resulting only from the random variability within a given
conceptual model.

In the present paper, we carry out a different type of model
comparison. First of all, we assume that little data is available
about a given site, as it is most often the case for hydrogeologists.
Secondly, our interest is focused on braided river aquifers. To com-
pensate the data paucity, we consider different geological concep-
tual models and we use prior information from analog sites
elsewhere in the world to constrain the heterogeneity models. In
a context where no conductivity measures are available, the issue
of model conditioning or even inverse conditioning cannot be
addressed. We then perform a set of concentration predictions
and compare the results with a highly detailed reference data
set. As stated at the beginning of the introduction, the general idea
is to test if it is possible to use analog data to make truly relevant
uncertainty analysis.

In this framework, one important question is whether one con-
ceptual model is more robust in a sense that it is likely to provide
more reliable uncertainty estimates than others. Here, three types
of models, designed for braided river aquifers, are tested in this sit-
uation (a multi-gaussian model, an object based model, and a
process-imitating model). The reference data set comes from the
MAcro Dispersion Experiment (MADE) site which is an extremely
well studied example of complex geological heterogeneity result-
ing from braided river deposit. Over the years, a large number of
experiments have been carried out on the site (Zheng et al.,
2011), resulting in an impressive and high quality data set. In par-
ticular, several experiments resulted in very dense tracer data sets.
The concentration data measured at the MADE site are compared a
posteriori with the concentrations simulated for the different mod-
els. These comparisons allow to compute various errors, such as
error on the contaminant mass, error on the concentrations, error
on the plume center of mass, error on the plume dispersion for
instance. In addition, to assess the quality of the predictions uncer-
tainty in a context of information paucity, the cumulative mass of
the contaminant is predicted in different zones.

The paper is structured as follows. First, Section 2 presents what
are the information used from the MADE site data-set to setup the
problem and how analog sites described in the literature are com-
piled to complete these information. Then, the different geological
conceptual models are described in Section 3. The transport model
and its specific parameters and boundary conditions are presented
in Section 4. Finally, the results of the plume simulations are pre-
sented and analyzed in Section 5.

2. Data and setup

Though the MADE experiments provide a lot of information
from conductivity measurements, piezometer levels and concen-
trations at different locations and time-steps, hydrogeologists in
general do not have access to so much data because of budget
and time constraints. Therefore, we assume that field data infor-
mation is limited to the sandy gravel nature of the braided river
aquifer and to a few measurements allowing to set the boundary
conditions for the transport simulations: piezometric level
upstream and downstream of the domain, as well as
Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
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concentrations of the contaminant at day 27. Here, the injection
at day 0 is not simulated to avoid numerical issues due to a strong
gradient of the concentrations. This is what we define as our lim-
ited information.

Additionally, to study the impact of the model structures on the
uncertainty of contaminant transport prediction, all conductivity
fields are normalized to ensure that they have the same mean
and the same variance. In order to compare concentration predic-
tions with a reference, petrophysical properties shall be calibrated
somehow. This is why the conductivity mean and variance as well
as data like characteristic length scales, required to generate real-
izations of hydraulic property fields with the different geological
conceptual models, shall be retrieved from analog data.
2.1. The MADE site

The MADE site is located on the Air Force Base of Colombus,
Mississippi (see Fig. 1), about 2 km South of the Buttahatchee
River and about 6 km East of the Tombigbee River. Its surface of

about 0:25 km2 is quite flat. It comprises elevations between
64:6 MSL and 66:5 MSL. The topography presents a slope of 4–
5‰. The alluvial aquifer is shallow and its mean thickness is about
11 m. The aquifer is constituted of a sandy gravel Pleistocene allu-
vial terrace associated to the Buttahatchee River over an aquitard
composed of Cretaceous marine sediments.

Due to its highly heterogeneous hydraulic properties, it has
been actively studied (Zheng et al., 2011) from the mid nineteen
eighties, to investigate transport problems in complex porous
medium. From 1986 to 2007, three main tracer experiments under
natural hydraulic gradient have been conducted at the whole site
scale (MADE I–III). It has been followed by two tracer experiments
under forced hydraulic gradient at smaller scales (MADE IV and V).
More recently, geophysical campaigns including Ground
Penetrating Radar (GPR), Direct Push (DP) and Direct Current
(DC) resistivity measurements have been conducted to complete
the characterization of the site (Bowling et al., 2005; Dogan et al.,
2011; Bohling et al., 2012).

In this paper, we choose to focus on the MADE II Tritium con-
taminant experiment because it offers a high quality data set with
a perfect conservative tracer allowing to investigate the effect of
heterogeneity on uncertainty without having to consider addi-
tional process such as density contrasts, retardation or chemical
reactions. Furthermore, this experiment has been modeled by
numerous teams (Feehley et al., 2000; Barlebo et al., 2004;
Salamon et al., 2007; Guan et al., 2008; Llopis-Albert and Capilla,
2009), which will facilitate the comparison and the interpretation
of the resulting plumes.

The MADE II experiment (Boggs et al., 1993) lasted 15 months.
Five snapshots of the concentrations and the hydraulic heads were
taken at time steps 27, 132, 224, 328 and 440 days after injection
(see Fig. 1 for an illustration of the piezometers and Fig. 2 for an
illustration of the measured concentrations at day 328).

The data were measured thanks to 328 multilevel samplers,
each of them being equipped with 20–30 sampling points space
0:38 m apart vertically. To avoid high numerical gradient due to
the injection in this exercise, day 27 will be considered as the start-
ing date for initial conditions. As the Tritium plume was not com-
pletely sampled during the fifth snapshot, the ending date of the
exercise is fixed to day 328, corresponding to the fourth snapshot
and providing thus the reference points set.
2.2. Analog site data

Facies conductivity mean and variance and porosity values as
well as characteristic length scales can be retrieved or computed
uncertainty on contaminant transport forecasting in braided river aquifers.
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Fig. 1. The MADE site: location (a) and piezometer network (b) – injection location corresponds to coordinates (0, 0).

Fig. 2. Reference concentrations measured 328 days after injection.
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from analog site studies (Brierley, 1989; Anderson et al., 1999;
Bayer et al., 2011) or from shared database like wwhypda
(Comunian and Renard, 2009). In this paper, all the necessary ana-
log site data comes from the work of Jussel et al. (1994) where the
main structural elements of a braided river aquifer are described
precisely in terms of dimensions, hydraulic conductivity distribu-
tion and porosity. The essential information is resumed in Table 1.

One might note that the number of structural elements to con-
sider might differ between two braided river aquifers. Indeed for
numerical models, the number of structural elements relies on
the retained geological concept, as illustrated in Section 3. This is
why the main structural and depositional elements proposed by
Jussel et al. (1994) are not described in details here.
Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
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In order to compute, from the analog data, a common mean and
variance of the log conductivity and porosity for the different geo-
logical conceptual models, we proceed as follow. Let us denote X a
discrete variable representing the facies X ¼ i; i ¼ 1; . . . ;n, charac-
terized by a known distribution pi ¼ PðX ¼ iÞ and Y ¼ lnðKÞ a con-
tinuous variable representing the log conductivities, noting
Yi ¼ ðY jX ¼ iÞ. Knowing pi; li ¼ EðYjX ¼ iÞ; r2

i ¼ VARðYjX ¼ iÞ we
can compute the mean llnK and variance r2

lnK of Y as:

llnK ¼
X

i

pili; ð1Þ

r2
lnK ¼

X
i

pil2
i � l2 þ

X
i

pir2
i : ð2Þ
uncertainty on contaminant transport forecasting in braided river aquifers.
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Table 1
Geometrical and hydraulic parameters from Jussel et al. (1994) – GG: gray gravel, BG: brown gravel, OW: open framework, BM: bi-modal gravel.

Parameters Structural element type

GG/BG horizontal GG BG GG/BG inclined

Volumetric fraction pi , % 57.8 9.4 15.8 4.4
Real lens length Li � rLi

, m . . . 27� 16 50� 29 10� 6
Length/width L=Bi � rL=Bi

. . . 2:0� 0:5 2:0� 0:5 2:0� 0:5
Max. lens height Hi . . . 0:06Li 0:04Li 0:15þ 0:03Li

Porosity, % 17.0 20.1 14.1 17.0
Conductivity Ki , mm/s 0.08 0.15 0.02 0.1
rlnKi

0.8 0.5 0.6 0.8

OW/BM Sand Silt OW single

Volumetric fraction pi , % 5.3 5.0 0.4 1.9
Real lens length Li � rLi

, m 22� 14 9:8� 5:7 8:6� 5:8 2:6� 1:5
Length/width L=Bi � rL=Bi

2:1� 0:6 2:4� 1:1 2:0� 0:5 2:0� 0:5
Max. lens height Hi 0:45þ 0:033Li 0:25þ 0:021Li 0:14þ 0:027Li 0:072þ 0:008Li

Porosity, % 30.0 42.6 40.0 34.9
Conductivity Ki , mm/s 10 0.26 0.005 100
rlnKi

0 0.4 0 0

4 G. Pirot et al. / Journal of Hydrology xxx (2015) xxx–xxx
Using the values of Jussel et al. (1994) summarized in Table 1 leads
to a mean of the log conductivity and a standard deviation of:

llnK ’ �9:14

r2
lnK ’ 3:05

ð3Þ

or in base 10 llog10K ’ �3:97 and r2
log10K ’ 0:58, K being expressed in

m/s. The mean is porosity ln ¼ 0:20. These values are of course dif-
ferent from a mean lnðKÞ of �11.6 and variance of 6.6 obtained by
direct-push injection logger measures (Bohling et al., 2012) and
from a mean porosity of 0.31 as reported by Boggs and Adams
(1992). These differences are the consequence of the data paucity
assumption and they do not prevent pursuing the aims of the
papers.

Jussel et al. (1994) also provide characteristic length scales per
facies, as presented in Table 1. There are no dimension characteris-
tics defined for the predominant facies GG/BG, as it is considered as
the background matrix. We assume that the connectivity through
the aquifer will be mainly influenced by the dimensions of the lar-
gest and most represented structural element BG. As one can see,
its dimensions might vary over a large range. To take into account
this uncertainty on the prior, we define 5 scenarios of characteris-
tic dimensions (see Table 2).

To sum-up, only the BG structural element is used to define
characteristic length scale scenarios. All structural elements pro-
portions, conductivity mean and variance are used to compute a
common conductivity mean and variance.

2.3. Experimental setup

The domain dimensions retained here are the same than the one
used by Salamon et al. (2007) and Llopis-Albert and Capilla (2009):
110� 280� 10:5 m with a 1� 1� 0:1 m resolution (3.2 millions
cells). The coordinate system is designed so that the injection zone
is centered on (0, 0) in the horizontal plane (see Fig. 1). Each concep-
tual geological model is decomposed in 5 scenarios to cover the
Table 2
Dimension characteristics per scenario.

Parameters Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

Length (m) 21:0 35:5 50:0 64:5 79:0
Width (m) 8:4 14:2 20:0 25:8 31:6
Depth (m) 0:84 1:42 2:00 2:58 3:16

Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
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uncertainty on characteristic dimensions (Table 2). For each scenar-
io, 40 geological realizations are generated, which builds an ensem-
ble of 200 geological realizations per conceptual model.

To test the quality of the predictions obtained using different
conceptual models, we define downstream of the injection site
three target zones (zone 1: 100 m < Y 6 120 m, zone 2:
170 m < Y 6 190 m, zone 3: 240 m < Y 6 260 m) where simulated
iso-concentrations or cumulative mass can be compared with the
MADE II reference.

3. Geological conceptual models

Three different models are described hereafter to represent the
geological heterogeneity of a braided river aquifer. The first one is
the multi-gaussian model. Multi-Gaussian Simulations (MGS) have
been generated using the turning bands technique (Matheron,
1973; Journel, 1974; Emery and Lantuéjoul, 2006). This type of
model has been frequently used to represent the heterogeneity of
the MADE site (Barlebo et al., 2004; Salamon et al., 2007;
Llopis-Albert and Capilla, 2009), and is repeated here to facilitate
interpretation and comparison with previous work. The second
method is an object based model (OBJ) developed by Huber et al.
(submitted for publication) (As the paper is not yet published, the
reader might refer to Huber (2015)). The third model uses a pseudo
genetic algorithm developed by Pirot et al. (submitted for
publication) (As the paper is not yet published, the reader might
refer to Pirot (2015)) for two different parameter sets (PG1 and
PG2). In the present paper, we are interested in contaminant trans-
port predictions in braided-river aquifers. This is why we limited the
modeling methods to the one based on geological description or
genesis of braided-river aquifers plus a standard multi-gaussian
model as comparison reference. Conductivity field realizations for
the different conceptual models are illustrated in Figs. 3 and 4.

3.1. Multi Gaussian simulations

In a data sparse context, the theoretical variogram models can-
not be inferred from a geostatistical analysis of ‘non-existing’ con-
ductivity samples. However log conductivity mean and variance as
well as structural element characteristic dimensions for the same
kind of geological environment are available in the literature (e.g.
Jussel et al., 1994), as explained in Section 2.2. Here we make the
assumption that one can use the characteristic dimensions pro-
vided by Jussel et al. (1994) to estimate the variogram ranges.
uncertainty on contaminant transport forecasting in braided river aquifers.
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Fig. 3. Two dimensional longitudinal (a–d) and lateral (e–h) sections of scenario 3 conductivity fields for the different conceptual geological models (a) and (e): MGS, (b) and
(f): OBJ, (c) and (g): PG1, (d) and (h): PG2.

Fig. 4. Three dimensional representations of scenario 3 conductivity fields for the different conceptual geological models (a): MGS, (b): OBJ, (c): PG1, (d): PG2.
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Without specific information, no nugget effect is considered. Here
we propose to use a spherical variogram model. The ensemble of
parameters to define the variogram models for each scenario are
summed up in Table 3.
Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
J. Hydrol. (2015), http://dx.doi.org/10.1016/j.jhydrol.2015.07.036
To allow a systematic model comparison later on, the mean
and variance of the log conductivity fields are normalized
(Eq. (4)) so that the resulting mean and variance are those given
by Eq. (3):
uncertainty on contaminant transport forecasting in braided river aquifers.
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Table 3
Variogram models per scenario.

Parameters Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

Type of variogram spherical
Sill r2

lnK ¼ 3:05
Longitudinal range (m) 21:0 35:5 50:0 64:5 79:0
Lateral range (m) 8:4 14:2 20:0 25:8 31:6
Vertical range (m) 0:84 1:42 2:00 2:58 3:16
Kriging mean llnK ¼ �9:14
Kriging variance r2

lnK ¼ 3:05
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lnKnormalized ¼ ðlnKsim � llnKsim
Þ � rlnK

rlnKsim

þ llnK ; ð4Þ

with llnKsim
and rlnKsim

the log conductivity mean and standard devi-
ation of the simulated field. Illustrations of MGS simulations are
given in Figs. 3(a) and (e), 4(a) and 5(a).

3.2. Object and process based models

Field observations of gravel pit exposures of Pleistocene coarse
deposits in Switzerland showed that the main types of depositional
elements are horizontal layers and ‘‘cross-bedded sets [. . .] with
trough-shaped, erosional concave upward lower bounding
surfaces’’ (Huggenberger and Regli, 2006). The horizontal layers
correspond to poorly sorted gravel (the grey gravel (GG) in
Table 1). The erosional bounding surfaces of the trough-fills are
generally spoon-shaped and oriented in the main flow direction
(e.g. Siegenthaler and Huggenberger, 1993). Therefore, they were
identified as being formed by scour-pool fills (e.g. Siegenthaler
and Huggenberger, 1993; Jussel et al., 1994; Klingbeil et al.,
1999; Heinz et al., 2003; Huggenberger and Regli, 2006;
Bayer et al., 2011). The trough-fill mostly consists of open
Fig. 5. Three dimensional representations of conductivity fields for the five scenarios (1
PG2.
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framework – bimodal gravel couplet cross-beds (OW/BM in Table 1,
see also Siegenthaler and Huggenberger, 1993; Huggenberger and
Regli, 2006). Due to the strong contrast in hydraulic conductivity
between GG and OW/BM, the three dimensional spatial distribution
of OW/BM in the subsurface is likely to act as a fast pathway for
the subsurface flow (Huber and Huggenberger, 2015). The GG can
be considered as background. A brief description of the algorithm is
proposed in the next paragraph. All the details can be found in
Huber et al. (submitted for publication).

The algorithm mimics the deposition and erosion of sediments on
the braidplain for successive large flood events. The trough-fills are
modeled with truncated ellipsoids aligned with the horizontal plane.
At each event a horizontal layer of sediment is deposited on the pre-
vious braidplain elevation and truncated ellipsoids are randomly dis-
tributed on the horizontal layer. The top elevation of the truncated
ellipsoids coincides with the top elevation of the deposited layer.
The vertical distribution of the layer is simulated by a homogeneous
Poisson process of intensity k ¼ Zmax�Zmin

ag , where ag (m/layer) is the

expected aggradation rate and Zmax � Zmin (m) is the desired aquifer
thickness. The width, length and depth of the truncated ellipsoids
as well as their orientation are supposed uniformly distributed. The
center of the truncated ellipsoids is distributed according to a
Strauss process defined by the parameters b; c and r. The resulting
2 facies models are then meshed to form a regular grid and the cells
are assigned conductivities retrieved by assuming log normal distri-
butions within each facies (Jussel et al., 1994) without accounting
for spatial correlation. The cells associated to the matrix and the
scours respectively are assigned conductivity statistical properties
of facies GG and OW/BM respectively (see Table 1).

The Object model parameters are given in Table 4. The semi-axes
a; b and c as well as the vertical truncation ratio rH were defined
such that the objects dimensions do not exceed the characteristic
dimensions defined for each scenario in Table 2. According to
–5) and the different conceptual geological models (a): MGS, (b): OBJ, (c): PG1, (d):

uncertainty on contaminant transport forecasting in braided river aquifers.

http://dx.doi.org/10.1016/j.jhydrol.2015.07.036


Table 4
Object model parameters per scenario.

Parameters Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

Ellipsoid semi-length a, m ½8:0;10:5� ½10:0;17:75� ½15:0;25:0� ½15:0;32:25� ½20:0;39:0�
Ellipsoid semi-width b, m ½2:0;4:2� ½4:0;7:1� ½8:0;10:0� ½8:0;12:9� ½10:0;15:8�
Ellipsoid semi-depth c, m 0:2

0:3
;
0:84
0:8

� �
0:4
0:3

;
1:42
0:8

� �
0:4
0:3

;
2

0:8

� �
0:55
0:3

;
2:58
0:8

� �
1

0:3
;
3:16
0:8

� �

Ellipsoid orientation a �40p
180

;
40p
180

� �
�40p
180

;
40p
180

� �
�40p
180

;
40p
180

� �
�40p
180

;
40p
180

� �
�40p
180

;
40p
180

� �

Ellipsoid truncation rH, m ½0:3;0:8� ½0:3;0:8� ½0:3;0:8� ½0:3;0:8� ½0:3;0:8�
Aggradation ag, m 0:05 0:1 0:16 0:2 0:25
Strauss Beta b 0:00015 0:00006 0:00004 0:000025 0:000013
Strauss Gamma c 1 1 1 1 1
Strauss r 20 45 60 75 90

Fig. 6. Repetition of the facies sequence forming cross-stratified deposits for the
pseudo genetic models – extracted from a vertical section orthogonal to the flow
direction.
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Heinz et al. (2003), the aggradation rate and the spatial density of
the scours are approximately inversely proportional to the dimen-
sions of the scours. For each scenario, the aggradation rate ag and
the Strauss point process parameters b; c and r were adjusted by
trial and error to keep approximatively the same facies proportions
when the size of the objects changes. It allows to keep focused on
the impact of geological structures, as stated in the objectives.

Then, to ensure the same log conductivity mean and variance
for all realizations, the log conductivity fields simulated are nor-
malized according to Eq. (4). Note that because of this normaliza-
tion, the mean conductivity values defined for the distribution
laws do not matter and it only influences the variances to a low
extent. Illustrations of OBJ simulations are given in Figs. 3(b) and
(f), 4(b) and 5(b).

3.3. Pseudo genetic aglorithm

The algorithm produces facies models. The pseudo-genetic
method (Pirot et al., submitted for publication) assumes first that
the main structures of a braided river aquifer, obtained after many
erosion and deposit events present some internal interfaces that are
similar to some extent to the observable surface topography. It sup-
poses secondly, that the sediments are deposited in erosion scours
under local flow and topography constraints, which produces
cross-stratifications. Inspired by principles first established by
Webb (1994), the proposed method is based on stacking successive
topography simulations, which creates erosion surfaces and deposit
volumes called geological units. These geological units are then
decomposed in different geological facies according to local geo-
morphological conditions. Here we provide a brief overview of
the method and the parameter values used for this test case. Full
details are available in Pirot et al. (submitted for publication).

The successive topographies are simulated conditionally to the
previous state with the Direct Sampling (DS) Multiple-Point
Statistics (MPS) algorithm (Mariethoz et al., 2010) following the
method developed by Pirot et al. (2014). The same DS parameters
presented in Pirot et al. (2014) are used here. The training data set
is composed of successive Digital Elevation Models of an analog
braided river, the Waimakariri River, New Zealand, acquired by
LIDAR at different time steps (Lane et al., 2003). Note that data
from another analog braided river could be used. Stacking the
topographies successively over the previous ones with a fixed
aggradation rate contributes (1) to erode partly the underlying
geological layers and (2) to deposit sediments, forming so a new
geological layer. A progressive and iterative deformation scheme
of the geological layers base, taking into account approximate local
flow and local topography, allows to generate the cross stratified
deposits by repeating the sequence of successive facies 1 and 3,
as illustrated in Fig. 6.

In the facies sequence (Tables 6 and 7), the matrix is defined as
facies 2. It corresponds to the GG/BG horizontal structural element
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defined by Jussel et al. (1994). Facies 1 represents sorted coarse
grain sediments as in the natural sorting occurring during the
scour filling process, coarse sediments will deposit first, followed
by finer sediments. This is also why facies 3 represents fine grain
sorted sediments. The log conductivity mean is known and given
by Eq. (5),

llnK ¼ p1 � lnðK1Þ þ p2 � lnðK2Þ þ p3 � lnðK3Þ ð5Þ

where fp1;p2;p3g and fK1;K2;K3g are respectively the proportions
and conductivity values of facies f1;2;3g. Note that the proportions
are not input parameters in the algorithm, but are resulting param-
eters. The variance is known and given by Eq. (6),

r2
lnK ¼ EðlnðKsimÞ2Þ � EðlnðKsimÞÞ2 ð6Þ

where Ksim is the conductivity field for the simulation. Developing it
with facies proportions and conductivities, it becomes Eq. (7):

r2
lnK ¼ p1 � lnðK1Þ2 þ p2 � lnðK2Þ2 þ p3 � lnðK3Þ2

� ðp1 � lnðK1Þ þ p2 � lnðK2Þ þ p3 � lnðK3ÞÞ2: ð7Þ

The values of llnK and r2
lnK are set to �9:14 and 3:05 according to Eq.

(3) and the matrix (facies 2) conductivity value is fixed to
8� 10�5 m=s, the value estimated by Jussel et al. (1994) for the
GG/BG Horizontal structural element. It allows to provide then a
unique solution for K1 and K3, respecting the constraints edicted
by the description of the facies: K1 > K2 > K3.

Scaling parameters give a freedom degree to reproduce the dif-
ferent characteristic length scales desired for each scenario. The
algorithm is here executed with two different parameter sets
PG1 and PG2 to illustrate the potential of various aggradation rates
and local flow conditions. The parameters used to produce the geo-
logical units and to generate intra-unit heterogeneity are described
in Tables 5–7. For each version, the aggradation and deformation
scheme parameters have been set so that the resulting sediment
deposited in scours formed object with identifiable dimensions
when setting the scaling factors to 1. Let us denote dl; dw; dd the
length, width and depth dimensions of the resulting objects. PG1
version produced objects of dimensions dl � dw � dd ¼ 37�
22� 1:5 m and of lower density than PG2 version that produced
uncertainty on contaminant transport forecasting in braided river aquifers.
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Table 5
Dimension, resolution and general parameters.

Parameter Value

Zone of interest aquifer model
parameters

Length (flow direction), m 280
Width (orthogonal to the flow
direction), m

110

Minimum thickness – depth, m 10.5
Cell length, m 1
Cell width, m 1
Cell height, m 0.1

Braided river topography
dimensions

Length, m 11,600
Width, m 1200
Cell length, m 20
Cell width, m 20

Interpolation parameters Margin length, m 5
Margin width, m 5
Margin depth, m 0

facies parameters Coarse grain size sediment facies
value

1

Unsorted mixed grain size
sediment facies value

2

Fine grain size sediment facies
value

3
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objects of dimensions dl � dw � dd ¼ 66� 25� 1 m. For each sce-

nario j, the scaling factors s j
l ; s j

w; s j
d along the length, width and

depth axis are computed as s j
i ¼ I j

i � s j
i ; i 2 fl;w; dg where

I j
l ; I j

w; I j
d are the dimension characteristics for scenario j, as defined

in Table 2.
As the resulting model is defined on a pillar grid (Pirot et al.,

submitted for publication) – the layers of the geological model
have different thickness defined on a regular grid ðX;YÞ – the con-
ductivity values have to be transferred on a vertical regular grid
(see Fig. 7).

To limit the loss of information such as sharp conductivity con-
trasts or the presence of thin facies layers during this vertical
upscaling process, we derive vertical and horizontal equivalent con-
ductivities (Renard and De Marsily, 1997). The horizontal
Table 6
Scenario dependent structural parameters and iterative deformation scheme parameters f

Parameter

Structural parameters Scaling factor along length axis
Scaling factor along width axis
Scaling factor along depth axis
Aggradation rate a

Deformation scheme parameters Number of iterations n
Facies sequence
Flow power f p

Smoothing radius r

Table 7
Scenario dependent structural parameters & iterative deformation scheme parameters for

Parameter

Structural parameters Scaling factor along length axis
Scaling factor along width axis
Scaling factor along depth axis
Aggradation rate a

Deformation scheme parameters Number of iterations n
Facies sequence
Flow power f p

Smoothing radius r
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component of the conductivity is computed by taking the arith-
metic mean Kxx ¼ Kyy ¼

P
ipiKi where i denotes the facies index, pi

the proportion of facies i with conductivity Ki in the concerned reg-
ular grid cell on which we want to compute de equivalent conduc-
tivity. Similarly, the vertical component of the conductivity tensor is
computed as the harmonic mean of the local values Kzz ¼ 1P

i

pi
Ki

.

3.4. Integral scale cross comparison by scenario and geological concept

One could wonder if the conductivity models generated by dif-
ferent algorithm present comparable length scale characteristics
within each scenario, as the different model parameters were
design to facilitate it. In order to provide a quantitative comparison
of the resulting length scale characteristics, the integral scales of
the ln K realizations were computed along the three directions of
the orthonormal basis. The lateral direction represents the hori-
zontal direction orthogonal to the main flow direction. The longitu-
dinal direction corresponds to the main flow direction. Given a
specific direction, the integral scale Is is computed as

Is ¼
R1

0 qðhÞ dh where qðhÞ ¼ r2�cðhÞ
r2 is the two-point

auto-correlation as a function of the distance h along the retained
direction, cðhÞ being the semi-variogram. The box-plots of the inte-
gral scales per scenario and per concept are presented in Fig. 8.

It shows that scenario characteristic length scales can be
retrieved for the MGS and OBJ models and in a less pronounced
way for the PG1 models, as the integral scale is an increasing func-
tion of the scenario length scale. However for the PG2 models, it is
not possible to differentiate the scenarios by the integral scale, as
its mean looks almost constant, only the variance seems to
increase. A most probable reason is the presence of the sharp con-
trasts due to the cross stratification deposits which shortens the
characteristic length scale of the conductivity. In spite of our efforts
to customize model parameters in order to have comparable char-
acteristic length scales per scenario, the integral scales are differ-
ent from a concept to another. The integral scales of the OBJ
models seems limited to the integral scales of scenarios 1–4 for
or the PG1 variant.

PG1 value

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

0:57 0:96 1:35 1:74 2:14
0:38 0:65 0:91 1:17 1:44
0:56 0:95 1:33 1:72 2:11
0:4 m=geological layer

6
½1 ; 3 ; 1 ; 3 ; 1 ; 3 ; 2�
2
3 cells

the PG2 variant.

PG2 value

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

0:32 0:55 0:77 0:99 1:22
0:34 0:57 0:80 1:03 1:26
0:84 1:42 2:00 2:58 3:16
0:3 m=geological layer

6
½1 ; 3 ; 1 ; 3 ; 1 ; 3 ; 2�
5

3 cells

uncertainty on contaminant transport forecasting in braided river aquifers.
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Fig. 7. Vertical grid regularization.
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MGS models while those of the PG1 models reflect those of scenar-
ios 3 and 4 for the MGS models, and those of the PG2 models are
comparable to those of scenario 1 for MGS and OBJ models.

4. Transport model

All the heterogeneity models described in the previous section
have been used as input to simulate groundwater flow and trans-
port using the finite element code Groundwater (Cornaton, 2007).
Piezometric head measurements show that the hydraulic gradient
across the area has not changed significantly during the experi-
ment. In addition the injection phase is not modeled here and
the flow state is assumed to be stabilized 27 days after the injec-
tion. Therefore the flow is modeled in steady state. Solute transport
is modeled by solving the advection dispersion equations in tran-
sient regime. For all the models, the mesh resolution has been kept
identical to the geological models and includes about 3:2 million
cells (110� 280� 105 cells of dimension 1� 1� 0:1 m).
Iso-surfaces of the transport simulations are illustrated for the dif-
ferent conceptual models and their variant at various concentra-
tions threshold in Section 5.

4.1. GW parameters

Following Salamon et al. (2007) and to avoid numerical instabil-
ities due to the initial injection conditions, the tritium plume at day
Fig. 8. Integral scales of the ln K realizations along the orthonormal basis d
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27 is considered as the initial concentrations state (see Fig. 9).
Prescribed heads of 63:1 m and 62:0 m are set respectively on
the inlet and outlet faces of the model as well as a fixed concentra-
tion of 0:0 pCi=mL on the inlet face of the model; all these condi-
tions are kept constant for the whole duration of the transient
transport simulation. Inflow and outflow are limited to the inlet
and outlet faces (Fig. 9).

The transient transport simulations are performed over
301 days, until day 328, using an automatic time-stepping strat-
egy. The main transport parameters are kept identical for all the
different subsurface models. The porosity fields are assumed equal
to the mean porosity ln ¼ 0:20 computed in Section 2.2. Though it
is superfluous due to the heterogeneity models, the longitudinal
dispersivity is a parameter required by Groundwater, the flow
and transport simulator. The longitudinal dispersivity aL is set to
1:0 m, the transverse horizontal dispersivity aTh to 0:1 m the
molecular diffusion Dm to 10�9 m2=s and the storage coefficient
SS to 10�5 m�1.

4.2. Interpolations of the concentration data

The concentrations sampled on the field at day 27 (Fig. 10(a))
are interpolated on the whole domain of the model to obtain the
initial state for the transport simulations (Fig. 10(b) and (c)).

The same procedure is applied on the data corresponding to day
328 to estimate the cumulative mass along the longitudinal axis,
the main flow direction. The raw data are transformed using a
Normal Scored Transformation (NST) before being interpolated
by Simple Kriging. The kriging results are back-transformed into
interpolated concentrations. As the natural Tritium concentration
at the MADE site is around 2 pCi=mL (Boggs et al., 1993), interpo-
lated concentration values below or equal to this threshold are set
to 0.

The interpolations are performed using Isatis, and the kriging
parameters are described in Table 8.

Note that the kriging means are set to the low boundary values
of the NST concentration values, to ensure that the interpolated
irections presented for all scenarios and grouped by conceptual model.

uncertainty on contaminant transport forecasting in braided river aquifers.

http://dx.doi.org/10.1016/j.jhydrol.2015.07.036


Fig. 9. Initial and boundary conditions.

Fig. 10. Concentration samples (a) and thresholded interpolation of the highest concentrations representing 80% of the mass contaminant (b) and (c) at day 27.
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values located far away from the plume are equal to the
background natural concentration after back transformation.
Based on the field observations and on previous interpolations of
the Tritium plume at day 328 (Feehley et al., 2000), it can be
asserted that the entirety of the plume stays within the model
boundaries. Then to keep the mass consistency between the
simulations and the reference at day 328, the back-transformed
interpolated concentration field is normalized so that the observed
mass at day 328 is the same as at day 27.
Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
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5. Comparison of simulated versus measured concentrations

In this section, the simulated plumes are analyzed qualitatively
and quantitatively for each conceptual model. The analysis com-
pares the different conceptual models but not the different scenar-
ios as these are used to cover the aquifer characteristic dimensions
uncertainty. Most of the quantitative errors are computed directly
from the sample data without intermediate interpolation, to avoid
errors due to (1) non-linear NST of the reference data at day 328
uncertainty on contaminant transport forecasting in braided river aquifers.
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Table 8
Normal scored transformed concentrations simple kriging parameters.

Parameter Value for concentrations

At day 27 At day 328

Kriging model Exponential þ linear Exponential
Nugget 0 0:32
Sill 0:32þ 0:45 0:74
Range 2:0þ 7:2 m 16 m
Simple kriging mean �3:2 �3:4
Moving neighborhood ellipsoid 21� 21� 3 m 21� 21� 3 m
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before interpolation and (2) back-transformation of the interpo-
lated data. However, it is reasonable to use such smoothing inter-
polation method when computing a smooth representation of the
reference plume such as a cumulative mass. The section ends with
a prediction uncertainty analysis of the cumulative mass in various
target zones.

5.1. Qualitative comparison of the plumes

Qualitatively, from the examples displayed in Fig. 11, one can
observe that 328 days after injection, the plume is getting out of
the domain for MGS and OBJ simulations; even high level of con-
centration are observed close to the exit of the domain.

Regarding PG1 simulations, the plume has spread with low con-
centrations toward the exit of the model, high concentrations
Fig. 11. Plume examples at day 328 for different conceptual models and for scena
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staying closer to the injection zone. For the PG2 simulation, the
plume is really slower and its furthest expansion is limited within
the first half of the domain, whatever the level of concentration
observed. Though these comments are valid and limited to the
observation of a single realization per conceptual model, they are
quite representative of the situation as confirmed by the indicators
that follow.
5.2. Quantitative errors

Fig. 12 presents the boxplots of errors between the simulation
and the reference. These quantitative indicators are grouped by
type of conceptual model. The first boxplot represents the error
on the total contaminant mass conservation eT (Eq. (8)) in the
model throughout the transient transport simulation duration. As
explained in Section 4.2, the contaminant total mass should be pre-
served between day 27 and day 328.

eT ¼ 1�
R

V Csimðx; y; z; t ¼ 328Þ ln dvR
V Cref ðx; y; z; t ¼ 27Þ ln dv

ð8Þ

Fig. 12(a) shows that for MGS and OBJ realizations, the contam-
inant leave the model for most of the realizations, while for PG1
and PG2 realizations, the plume stays within the model boundaries
for more than 50% of all realizations.
rio 3 at different concentration thresholds – vertical scale exaggerated by 5.

uncertainty on contaminant transport forecasting in braided river aquifers.

http://dx.doi.org/10.1016/j.jhydrol.2015.07.036


Fig. 12. Boxplots of errors at day 328; (a) error on the total mass; (b) L1 error on concentrations at sample location; (c) error on the center of mass longitudinal position; (d)
error on the center of mass dispersion; and (e)–(h) errors on iso-concentration classification by zone.
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The other quantitative indicators are based on the existing
sample locations. Let us denote NS the number of samples, s
the sample cell index, ~xs their coordinates and Cs the concentra-
tions at these locations. A simple way to define an error
between a simulated plume and the reference plume might be
to compute the L1 norm error eC between the simulated concen-
trations and the reference concentrations at the sample loca-
tions (Eq. (9)).
Fig. 13. Renormalized probability densities p
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eC ¼
XNS

s¼1

jCsim
s � Cref

s j
Cref

s

ð9Þ

Fig. 12(b) shows that globally, the simulated concentrations are
closer to the sampled reference for OBJ realizations than for MGS
realizations and even furthest for PG1 and PG2 realizations.

Another way to look at the plume characteristics is to analyze
the position of the plume center of mass and the plume dispersion
er model for C P 4 pCi=mL at day 328.

uncertainty on contaminant transport forecasting in braided river aquifers.
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around its center of mass. An error eG on the center of mass loca-
tion is defined as the euclidean distance between the center of
mass ~gsim of the simulated plume and the center of mass ~gref of
the reference plume (Eq. (10)).

eG ¼ ~gsim �~gref
�� �� where ~g... ¼

PNS
s¼1 C ...

s ~xsPNS
s¼1 C...

s

ð10Þ

Fig. 12(c) shows that the error on the center of mass longitudi-
nal position is small for PG1 and PG2 realizations while it is much
greater for MGS and OBJ realizations. It is not surprising that these
results are close to those shown by the error on the total contam-
inant mass conservation eT because a plume moving faster out of
the model boundaries implies that its center of mass will also
move faster towards the outlet. The plume dispersion around the
plume center of mass is computed as the average distance between
the center of mass and the sample location weighted by the con-
centration. It allows to define an error on the plume dispersion
eD as the difference between the simulated plume dispersion and
the reference plume dispersion (Eq. (11)).

eD ¼
PNS

s¼1 Csim
s k~xs �~gsimkPNS

s¼1 Csim
s

�
PNS

s¼1 Cref
s k~xs �~gref kPNS
s¼1 Cref

s

�����
����� ð11Þ

Fig. 12(d) shows that the plume dispersion is better reproduced
for PG1 and PG2 models than for MGS or OBJ models.

5.3. Accuracy of downstream forecast

Often, in practical applications, the objective is to estimate if the
concentration downstream of a contaminant plume may get higher
than a regulatory level. To quantify a contamination risk above
Fig. 14. Probability densities per mod
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determined thresholds Cth
k for k 2 f1;2;3g, one might use

iso-concentration classes on the simulated plumes to build an error
eI based on the miss-classification of the simulated sample versus
the reference sample classification (Eq. (12)).

eI ¼
1

NS � NK

XNS

s¼1

XNK

k¼1

1Csim
s PCth

k
� 1Cref

s PCth
k

ð12Þ

This error is computed for the whole domain ðeIÞ, and for three
delimited zones: zone 1, zone 2 and zone 3. Indeed, it is interesting
to know how the errors may vary depending on the position of the
zone of interest. Zones 1, 2 and 3 are restrained on the longitudinal
axis respectively between Y coordinates �100;120�; �170;190� and
�240;260� as illustrated in Fig. 1. Fig. 12(e)–(h) shows that MGS sim-
ulations give better iso-concentration predictions in zones 1–3 cor-
responding to the downstream part of the model while PG1 and
PG2 simulations offer a better prediction on the whole model
domain and by deduction in the upstream part of the model.

One might compute three-dimensional exceeding concentra-
tion probability maps of the simulated plumes PCth

ðxi; yi; ziÞ, where
i denotes the grid cell index in the model and Cth represents the
concentration threshold. These probabilities have been computed
as PCth

ðxi; yi; ziÞ ¼ 1
NR

PNR
j¼1 1C j

i
PCth

for two concentration thresholds

Cth 2 f4;16g and C j
i is the simulated concentration for realization

j in cell i. These probabilities are illustrated as probability density
maps after vertical and lateral integration (Eqs. (13) and (14)) in
Figs. 13 and 14.

P Z
Cth
ðx;yÞ /

P
k PCth

ðx;y;zkÞP
i PCth
ðxi;yi; ziÞ

; k layer index on the vertical z axis

ð13Þ
el for C P 16 pCi=mL at day 328.
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PX
Cth
ðy;zÞ/

P
l PCth
ðxl;y;zÞP

i PCth
ðxi;yi;ziÞ

; l layer index on the transverse x axis

ð14Þ

Vertical projections offer a top view of the iso-concentration
probability densities, while the lateral projections give a represen-
tation of the plume iso-concentration densities along the vertical
and longitudinal axes. One might expect to observe smaller proba-
bilities for higher concentration thresholds, but as P Z

Cth
ðx; yÞ and

P X
Cth
ðy; zÞ are re-normalized, some density maps present higher val-

ues for the highest concentration threshold in Fig. 14. Globally,
Figs. 13 and 14 confirm the trends observed with other indicators.
MGS and OBJ plumes go faster through the model. OBJ plumes
seems globally a little bit faster for concentrations smaller than
16 pCi=mL while for MGS plumes, the highest concentrations goes
faster through. For MGS and OBJ plumes, the plumes seems equally
dispatched on the vertical dimension, while it stays more concen-
trated along the longitudinal axis in the lateral–longitudinal plane.

PG1 and PG2 plumes are much slower. PG2 plumes stay really
close to the injection location.

The previous errors or probability density maps are rather glo-
bal and aggregated indicators. One might want less aggregated
indicators to assess the individual quality of the predictions. A
more qualitative way to assess the quality of the simulated plumes
is to compare the cumulative mass distribution along the longitu-
dinal axis as performed in previous studies of the MADE-II exper-
iment (Salamon et al., 2007; Llopis-Albert and Capilla, 2009). For
each longitudinal coordinate along the flow direction, the mass is
cumulated over the corresponding transversal section of the mod-
eled domain. The ensemble of mass distribution curves and some
Fig. 15. Cumulative mass along main flow direct
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typical profiles are illustrated separately for each conceptual model
in Fig. 15.

The mass distribution curves present different profiles from
gaussian bell to multimodal distributions, depending on the length
scale characteristics scenario and on the type of conceptual model.
Multimodal profiles are produced by all types of conceptual mod-
els, but profiles showing a high peak close to the coordinate 10 and
an accumulation zone around coordinate 170 are sparse (Fig. 15a
realization 106 and Fig. 15c realization 182 with a strong attenua-
tion due to mass loss).

The 10; 50 and 90 percentile of the mass distribution curves are
shown in Fig. 16.

They confirm the global trends observed with the quantitative
indicators (Fig. 12), that MGS and OBJ simulations (Fig. 16(a) and
(b)) produce faster plumes, do not include the first peak in the
mass distribution curve, but are better at predicting the ‘accumu-
lation’ zone, in opposition to PG1 and PG2 simulations (Fig. 16(c)
and (d)). However, the global shape of the cumulative mass distri-
bution along the flow direction looks better and is more promising
for PG1 and PG2 simulations: the peak around Y ¼ 0 m and the
accumulation around Y ¼ 170 m for the reference show a
bi-modal behavior that seems more often obtained by the PG1
and PG2 simulations.

To assess the quality and the uncertainty of the simulated
plume, one can look at the histograms of the cumulative mass in
the volumes delimited by the three control zones (Fig. 17) for the
simulations versus the reference. Indeed, in practical applications,
it is common to define a control zone to observe if a contaminant
exceeds a concentration. In this exercise, the cumulative mass
might be interpreted as a mean concentration over the control
zone, as the porosity is assumed constant over the model.
ion at day 328: typical breakthrough curves.

uncertainty on contaminant transport forecasting in braided river aquifers.
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Fig. 16. Cumulative mass along main flow direction at day 328: quantiles on breakthrough curves.
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For each zone, the different distributions around the reference
value show that the uncertainty completely depends on the obser-
vation zone. Of course it also depends a lot on the kind of model.
The best predictions for zone 1 are produced by OBJ simulations.
The best predictions for zone 2 are given by MGS simulations.
The best predictions for zone 3 come from PG1 simulations. PG2
simulations are outperformed in the target zones. In an inversion
framework, the PG2 parameterization could have been disre-
garded. However, would have a zone been further downstream,
PG2 realizations would have outperformed the other simulations.
The asymmetric uncertainty distribution around the reference val-
ues confirm the previous observations about the global plume
speed and spreading.
6. Impact of conceptual geological model on plume behavior

One could wonder if the plume speed differences are related to

the global equivalent permeability Keq. Let us denote K j
eq the global

equivalent permeability for realization j. K j
eq (ms�1) is computed

from Darcy’s law as K j
eq ¼ �

Qj

A � L
Dh where Q j (m3 s�1) is the total

discharge computed by Groundwater in realization j; A (m2) is
the area of the mean section orthogonal to the flow direction, L
(m) is the length of the modeled domain and Dh (m) is the water
gradient between the outlet and the inlet of the model. One could
expect to observe an increasing longitudinal coordinate of the cen-
ter of mass at day 328 as a function of the global equivalent
permeability.

However, a plot of the plume center of mass longitudinal
coordinates as a function of the equivalent permeability (Fig. 18)
does not reveal an increasing function.
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It shows on one hand that each conceptual model produces a
specific behavior, as a result of the geological structures that are
proper to each concept. On the other hand, a strong noise exists
within each conceptual model and many pairs of simulations

ðj1; j2Þ present characteristics – Kj1
eq < Kj2

eq and Yj1
G > Yj2

G , where YG

denotes the longitudinal position of the plume center of mass at
day 328 – in opposition to what could be expected at a first glance.
This intra-variability is probably due to the sensitivity of the initial
conditions such as the injection location on the plume dispersion.
Some of this noise might also be due to the computation of the
plume center of mass at day 328. Indeed if the plume speed is
highly heterogeneous, the mass staying within the model bound-
aries might be trapped in specific locations close to the injection
while most of the mass would have made its way out of the model
boundaries. A curious aspect is also that MGS simulations present a
wide variance of the plume center of mass longitudinal traveling
distance for a really thin distribution of equivalent permeabilities.
In opposition, PG1 realizations have a huge variability in the equiv-
alent permeability but produce plume traveling distances with a
smaller variance. From these general observations arise two main
questions. Firstly, what can explain the variance of the equivalent
permeability peculiar to each concept? Secondly, which factors
influence the variance of the longitudinal traveling distance of
the plume center of mass for the different concepts?

A possible influential factor for the equivalent permeability
variance might be the size of the heterogeneous structures regard-
ing the size of the modeled domain. Indeed, for MGS models, the
dimensions of the structures are really smaller than the model
dimensions (see Fig. 5). It allows for statistical stationarity of the
conductivity field within each realization. In addition, the realiza-
tions share the same conductivity mean and variance and therefore
uncertainty on contaminant transport forecasting in braided river aquifers.
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Fig. 17. Histograms of cumulative mass (pCi) predictions for day 328 in the three target zones; reference value: vertical red line.

Fig. 18. Plume center of mass longitudinal position at day 328 as a function of the
equivalent permeability.
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almost the same histogram for MGS realizations due to the field
re-normalization step. In that case, the flow paths might have a
similar mean behavior and mean power, resulting in a thin equiv-
alent permeability bandwidth. The extreme opposite conditions
happens for the PG1 simulations: some objects with high conduc-
tivity values have a scale of the same order of magnitude than the
domain dimensions and the extreme conductivity values may vary
Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
J. Hydrol. (2015), http://dx.doi.org/10.1016/j.jhydrol.2015.07.036
between the realizations (see Figs. A.21 and A.22 in the supple-
mentary material). As the high conductivity values are greater than
in the MGS case, it produces extremely strong flow paths crossing
the whole domain, which results in higher equivalent permeabili-
ties. Meanwhile, the connectivity of such strong flow path is not
systematic, and as the matrix is characterized by a low conductiv-
ity, the disconnection length between preferential flow paths
reduces the total discharge through the domain and consequently
cuts back the equivalent permeability.

As illustrated in the supplementary material (Figs. A.19, A.20,
A.21 and A.22), the traveling distance of the plume center of mass
depends on the conductivity values at the plume center of mass
location 27 days after injection. Indeed, the distance traveled by
the plume is related to the proportion and probability of the con-
taminant mass present in preferential flow path at the initial condi-
tions. In a sense, it is linked to the initial plume dispersion, the size
and the density of the preferential flow paths. Though the envelope
of the initial plume seems wide (see Fig. 9), its dispersion is rather
small and concentrated on a column, as one can see in Fig. 10. For
MGS realizations, as the probability for initial plume center of mass
to be in a preferential flow path or in a low conductivity zone is the
same and that the conductivity fields are continuous, it allows for a
wide variance in the center of mass longitudinal displacement. For
PG1 realizations, one might notice from conductivity sections (see
Figs. 3–5 and A.21) that the probability of the initial plume to be
located in a preferential flow path is small, as the high conductivity
facies have a smaller proportion than the low conductivity matrix.
As the number of realization is limited, here it might not be suffi-
cient to create an example where the initial plume center of mass
uncertainty on contaminant transport forecasting in braided river aquifers.
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would be within a preferential flow path and therefore, we only
observe examples where the center of mass does not travel far from
the injection location. To confirm this interpretation, a transport
simulation was performed with an initial plume shifted so that its
center of mass would be located in a preferential flow path. This
case is illustrated by an animation in the supplementary material.
This animation illustrates the first 13 days of transport simulation
on 13 successive frames. In that case, the mass present in the pref-
erential flow path is taken out of the model boundaries in a few
days. Then, the mass initially present in the matrix slowly makes
its way towards the preferential flow path, but when it reaches it,
it is rapidly diluted by the strong flow and nothing is then visible
in the preferential flow path.
7. Conclusion

It has been shown that with limited site-specific information, it
is possible to propose geological realizations that are coherent with
characteristic dimensions of braided-river deposits, based on dif-
ferent types of conceptual models and analog data. Globally, con-
sidering the assumption of field information scarcity, the
predicted plumes are within reasonable orders of magnitude in
terms of concentration and travel time. In this specific case, though
the conductivity mean llnðKÞ ’ �9:1 and variance r2

lnðKÞ ’ 3:1 val-
ues computed from analogue data (Jussel et al., 1994) are different
from the conductivity mean llnðKÞ ’ �11:6 and variance r2

lnðKÞ ’ 6:6
measured on the MADE site, as reported by Bohling et al. (2012),
the K distribution with a smaller variance and higher conductivity
mean is still overlapping with the DPIL measured K distribution.
Thus combined with various different geological structure might
allow reproducing comparable plume speed or dispersion.
However, none of the conceptual models was able to predict the
plume behavior and uncertainty in a completely satisfying manner
with the selected parameters. Considering multiple conceptual
models together help to compensate the conceptual model imper-
fections. In the test case, MGS or OBJ plume realizations could
locate the accumulation zone while PG1 or PG2 models could
describe the slow release of the contaminant. In a sense, all con-
ceptual models were useful.

A limitation of this study is that the variability of the OBJ and PG
geological models was not fully explored, inducing then an under-
estimation of the simulated plume uncertainty. Indeed the two
parameterizations proposed for the PG algorithm show that a wide
variety of structures, densities and connectivities can be generated,
by varying the different input parameters. Also, the strategy
adopted to assign the conductivity values so that the mean and
variance of the log conductivity field are the same for all realiza-
tions reduces the degrees of freedom and is therefore a limiting
factor. Considering different values within a given range for the
matrix conductivity would have changed the flow and transport
conditions and consequently would have lead to other plume
shapes and behaviors. Regarding the OBJ model, varying the den-
sity of objects per layer or the aggradation rate would also have
changed the structures and connectivities of the geological models.

Globally, the variability of the computed indicators is not uni-
form and strongly depends on the type of indicator, on the obser-
vation zone, and on the type of conceptual model. In addition, the
fact that errors are sometime (eI zone 2, eI zone 3) quite far from 0
for all or for most of the realizations and the fact that the reference
is not within the quantiles for the cumulative mass distribution
along the longitudinal axis suggest that there might not be enough
realizations, not enough parameter exploration within each con-
ceptual model (over constrained by the common conductivity
mean and variance and conductivity assignment rules) or that
the conceptual models used are not adapted.
Please cite this article in press as: Pirot, G., et al. Influence of conceptual model
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Regarding the limited data available in the modeling context,
one has to remind that no inverse conditioning has been per-
formed, and therefore it would be pure luck to have really small
errors on all concentration sample locations simultaneously
(impact on eC ; eI and cumulative mass distribution curves). Then,
through the observation of the cumulative mass distributions for
instance, the predicted plumes might be considered as acceptable
and the different conceptual models shall not be simply ousted.
Additionally, 200 realizations per conceptual model might not
seem enough to quantify the prediction uncertainty but it already
requires a large amount of computational time for such
multi-million cell models. Moreover some freedom degrees have
been restrained in the object-based and pseudo genetic conceptual
geological models to fulfill the constraints imposed by a common
conductivity mean and variance.

Consequently, further parameter space exploration should be
performed. As it would increase the contaminant plume uncer-
tainty, the question of adding information during the modeling
process to reduce the prediction uncertainty should be raised. As
it would be unrealistic in many cases to add as much conductivity
measurements as available for the MADE site, a suggestion is to
refine the subsurface structure length scale characteristics with
Ground Penetrating Radar surveys. The interpreted GPR data could
be transformed into summary statistics, offering a global selection
criterion, or it could also be used locally as conditioning data for
geological layer interfaces. More generally, the expected impact
of data conditioning is a reduction of the variability within and
between the conceptual models. This could also be verified.

Other limitations of this study offer further perspectives.
Indeed, the study has been conducted on a single reference site
and it is not possible to draw a general conclusion. A similar mod-
eling effort shall be conducted on other braided river aquifer study
sites, to check if the resulting prediction uncertainty confirms the
results described here. At last, as the plume behavior might not
be explained by the equivalent conductivity, the other factors con-
trolling the plume transport shall be analyzed in more details. In
particular, the initial location of the plume might have a consider-
able impact on the contaminant transport, especially when the
high concentrations are very localized as illustrated in the supple-
mentary material.
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