
RGPR - An open-source package to process and

visualize GPR data

Emanuel Huber

Applied and Environmental Geology

University of Basel

4056 Basel, Switzerland

emanuel.huber@unibas.ch

Guillaume Hans

FPInnovations,

2665 East Mall, Vancouver, BC

V6T 1Z4, Canada

guillaume.hans@fpinnovations.ca

Abstract—RGPR, the first ground-penetrating radar (GPR)

data processing package written in the R language, is presented. R

is a free and open-source high-level programming language for

statistical computing. RGPR is built around two main classes to

process and visualize GPR data as well as to keep track of the

processing steps. Although RGPR is still a work in progress, many

of the basic processing methods are already implemented. The

package is hosted on GitHub for collaborative development and is

easily expandable. Through its openness and the rich R

environment, RGPR promotes reproducible GPR research as well

as GPR processing learning.

Keywords—ground-penetrating radar; package; R language; open-

source; reproducible research; processing; visualization

I. INTRODUCTION

The processing of ground-penetrating radar (GPR) data is
generally an essential step to extract useful information.
Because of the similarity between GPR and seismic data, many
seismic processing software applications were used in the early
90's to process GPR data. Nowadays, many commercial
software applications 100% dedicated to GPR data are
available. However, those applications generally propose a
limited range of processing methods and/or are dedicated to a
very specific usage. We present RGPR, a new open-source
GPR data processing package that is written in the R language
[1] to allow greater freedom and flexibility for research.

R is an interpreted, high-level programming language for
statistical computing and graphics that is freely available under
the GNU General Public License and runs on Linux, Windows
and MacOS. It is a highly versatile and extensible language to
which C, C++ and Fortran code can be linked and run.
Furthermore, the R developer community is very active and
more than 10'000 packages are hosted on the official global
package repository CRAN (Comprehensive R Archive
Network, https://cran.r-project.org). To be hosted in the CRAN
repository, a package must have all functions, methods and
class documented according to the R package documentation
standards. The last twenty years, R has strongly gained
popularity and was ranked in 2017 as the sixth top
programming language by the Institute of Electrical and
Electronics Engineers [2].

RGPR was initially developed to compensate for
shortcomings of commercial GPR data processing applications

(i.e., apply specific signal processing methods, add
topographical data to GPR data, align two-dimensional GPR
profiles, export high-quality graphics, visualize GPR data in
three dimensions). In 2015 the code was organized into a R-
package based on the 'S4' system for oriented programming.

The key features of RGPR are (i) RGPR is freely available
and open-source, (ii) it depends on the freely available and
open-source R environment, (iii) it allows reproducible GPR
data processing by means of processing scripts and storage of
the processing workflow within every GPR object, (iv) it is
easily expandable, and (v) it exports well-designed publication-
quality plots.

Although RGPR is still a work in progress, the
development version is already available on GitHub [3] under
the GPL license. However, this version still presents several
limitations, the most notable being that it can only handle data
acquired in common-offset, common mid-point (CMP) or
wide-angle reflection refraction (WARR) modes. Nevertheless,
anyone can have access to the source code as well as to the
history of the changes made to the files. Furthermore, anyone
with a GitHub account can submit code modifications (e.g.,
bug fixes, new function) within the git workflow and contribute
to improve the package.

In this paper, we first briefly explain how to install RGPR
directly from its GitHub repository. Then, we present the
structure of the RGPR package and the two main classes it
uses. We also describe the main functions already implemented
for GPR data analysis, processing, visualization and
georeferencing. Finally, we outline the main functionalities that
should be added to RGPR in the near future as well as those
that would be desirable to have in a longer term.

II. PACKAGE INSTALLATION

RGPR can be installed within the R environment directly
from its GitHub repository using the 'install_github()' function
from the R-package devtools [4]. The code is documented in
the source files and the R-package roxygen2 [5] is used to
generate the standard R documentation files. Additional details
as well as tutorials are available in the GitHub repository.

Submitted to the
17th International Conference on Ground Penetrating Radar,
June 18–21, 2018 in Rapperswil, Switzerland

still under development, i.e., not yet ready

RGPR available at
https://github.com/emanuelhuber/RGPR

huber
Highlight

https://github.com/emanuelhuber/RGPR
https://github.com/emanuelhuber/RGPR

III. PACKAGE STRUCTURE

A. General overview

RGPR is built around two main classes, GPRsurvey and
GPRvirtual (Fig. 1) that allow codes and method names to be
recycled and the interface for the end-users to be simplified.
The same method names can be intuitively used for different
classes with specific behavior. For example, the same method
'plot()' can display a map of the GPR measurement lines or the
GPR data themselves when applied to an object of the class
GPRsurvey or GPRvirtual, respectively. GPR data carry
additional information (e.g., trace position, time signal, antenna
separation, time-zero) that can be modified during various
processing steps. This additional information along with the
GPR data are stored as attributes within the objects and
updated by the methods if necessary. Hence, the user does not
have to worry about modifying this additional information as
data are being processed.

B. The GPRsurvey class

The class GPRsurvey is designed to deal with any mapping,
georeferencing or topographic correction operation that need to
be performed with the GPR data.

An object of the class GPRsurvey does only contain a link
to the GPR data files as well as information about the GPR data
such as trace coordinates. It is further possible to apply batch
processing to the GPR data referenced by an object of the class
GPRsurvey. The processed GPR data are then saved on the
disk as temporary files and their links in the object are updated.
These data can be saved later by the user as GPR files (see
Section IV.D.).

C. The GPRvirtual abstract class

GPRvirtual is an abstract class that has four implementing
classes designed for four different types of GPR data: GPR,
GPRstack, GPRcube, and GPRslice (Fig. 1). Each of these
classes possesses, at least, the attributes listed in TABLE I.

The GPR class represents two-dimensional GPR data such as
common-offset or common mid-point GPR data with their
attributes. This is the simplest class that allows its objects to be
manipulated as two-dimensional arrays (i.e., matrix) objects.
Classical mathematical and matrix operations (e.g., addition,
scalar and matrix multiplication, absolute value, logarithm) as
well as subsetting work on objects of the GPR class.

TABLE I: ATTRIBUTES OF GPRvirtual

Attributes Type Description

version character version of RGPR in use

data array (2D/3D) GPR data (one trace per column)

z numeric depth position or sampling time

x numeric position of the traces along the survey

dz numeric time or depth sampling interval

dx numeric spatial trace sampling interval

coord array trace coordinates (x,y,z)

rec array receiver coordinates (x,y,z)

trans array transmitter coordinates (x,y,z)

units character time/depth and spatial unit

crs character coordinate reference system

time0 numeric time-zero of every trace

freq numeric antenna frequency (in MHz)

antsep numeric antenna separation

surveymode character survey mode (reflection/CMP)

fid character fiducial marks

ann character annotation (e.g., intersections)

name character name of the GPR data

description character description of the GPR data

filepath character file path of the GPR data

date character survey date

proc character processing steps applied to the data

vel list velocity model

hd list relevant additional information

Fig. 1. RGPR class system

x

y

Some multi-dimensional decomposition transforms applied
to two-dimensional GPR data results in a series of two-
dimensional arrays with identical size (e.g., singular value
decomposition, Fourier transform, Hilbert transform). The
GPRstack class is built to represent such arrays of two-
dimensional data, to process each array of two-dimensional
data individually and to back-reconstruct the GPR data.
Objects of the GPRstack class can be manipulated as array
objects.

The GPRcube class represents GPR data cubes (e.g., GPR
data collected along a regularly spaced grid). Objects of the
GPRcube class can be manipulated as array objects and are
created from GPR or GPRslice objects. The extraction of a
horizontal slice from a GPRcube object results in an object of
the GPRslice class that can be manipulated as a matrix (Fig. 1).

IV. AVAILABLE FUNCTIONS AND METHODS

A. Creating a GPR object

RGPR supports file formats from various GPR
manufacturers. Importing GPR data in R is therefore
straightforward and can be performed using the 'readGPR()'
function (file formats currently supported are listed in the help
page of this function). Furthermore, any matrix or array within
the R environment can be coerced into an object of the GPR
class.

B. Analysis and processing methods

RGPR currently provides a few analysis methods to explore
the GPR data (TABLE II) as well as some basic one-
dimensional and two-dimensional processing technics (TABLE
III). A few more advanced processing methods such as mixed-
phase deconvolution [6], topographic Kirchhoff migration
[7,8], and two-dimensional adaptive smoothing (based on the
R-package adimpro [9]) are also already implemented.
Furthermore, RGPR allows the user to apply its own functions
to the GPR data through wrapper functions for one-
dimensional, two-dimensional and moving-window based
processing.

TABLE II: ANALYSIS METHODS

1D (trace) analysis 2D analysis

• trace amplitude

• frequency and phase spectrum

• first wave break estimation

• frequency-wave spectrum

• CMP analysis

• structure tensor estimation

C. GPRsurvey methods

The methods of the GPRsurvey class exclusively

manipulate the traces coordinates. More specifically, the

methods currently allow to:

• display map of the GPR measurement lines that can be
superimposed on any raster or vector data (Fig. 2.A),

• display GPR data in three-dimensional interactive
graphics (fence diagram, Fig. 2.B) with the R-package
RGL [10],

• add or interpolate trace coordinates (the elevation
coordinates can be interpolated from raster data),

• georeference the trace coordinates (e.g., from a local
coordinate reference system to a regional reference
coordinate system),

• estimate the spatial shift between two (parallel) GPR
profiles.

TABLE III: PROCESSING METHODS

1D (trace) processing 2D processing

• dewow

• DC-shift

• trace average

• amplitude correction:

- power gain

- exponential gain

- automatic gain control

• frequency filter

• constant-offset correction

• 1D convolution

- deconvolution

- minimum-phase

• - mixed-phase

• f-k filter

• 2D convolution

• 3x3-median filter

• 2D adaptive smoothing

• topographic Kirchhoff

migration

D. Writing files

Once analyzed and processed, GPR objects can be saved in
the R native ‘.rds’ format for later use. In addition, GPR data
can be exported back in their original file format or any other
format currently supported by RGPR (including text file).
Furthermore, RGPR allows GPR data to be exported as high-
quality PDF file with full control on the aspect ratio. Any plot
can be exported to almost any image format using the various
R libraries dedicated to that purpose (e.g., Cairo [11], jpeg
[12]).

Trace coordinates can be exported as spatial vector data
(e.g., ESRI shapefiles). Hence, RGPR provide an interface
between standard GPR file formats and files used in
geographical information systems.

V. WHAT’S NEXT?

 The current development version of RGPR offers
access to the most popular GPR signal processing methods
coupled with the flexibility of working in the R environment.
However, as mentioned in the introduction, RGPR is still a
work in progress and many functionalities remain to be added.
For example, the ability to process transillumination GPR
profiles. The structure of RGPR will allow to quickly and
conveniently implementing additional methods in the near
future. In the long term, adding more complex functionalities
might require to bring modification to the class structure.
RGPR will be most likely brought to evolve but its readily
availability on GitHub will allow all users to easily assimilate
these changes.

A. Short term improvements

In the near future, a depth-varying velocity model for

migration from CMP will be added to RGPR as well as three-

dimensional processing technics and various transform

functions (e.g., eigenvector decomposition, Hilbert transform,

Stockwell transform). Furthermore, methods to delineate

structures on GPR data will be developed including three-

dimensional surface interpolation. Finally, the 'readGPR()'

function will be enhanced to support more file formats.

B. Long term perspectives

In the long term, a GPR signal forward simulator could be

added to RGPR to perform full-waveform inversion based on

finite-difference time-domain (FDTD) solutions to Maxwell’s

equations. This could be implemented, for example, by calling

the GPR simulator developed by [13] and coded in C directly

in R.

VI. CONCLUSION

RGPR is a free and open-source R-package to process and

visualize GPR data that is still in development. It is hosted on

GitHub for collaborative development and intended for

academic work. The structure of RGPR was designed with the

primary focus of ensuring that signal processing steps can be

easily reproduced and tracked. RGPR provides the first

interface for GPR data analysis, processing and visualization

in R. It opens infinite possibilities for researchers to

implement, develop and evaluate their own data processing

methods.

The ultimate goal of RGPR is to promote GPR related

research by providing access to the flexible and rich R

environment. RGPR has also a didactic vocation by

encouraging students and young researchers to learn about

GPR signal processing through various tutorials available on

the RGPR GitHub repository and the R documentation.

ACKNOWLEDGMENT

Work by the first author was partially funded by the Swiss

National Science Foundation (grants no. CRSI22_132249/1

and P2BSP2_161955).

REFERENCES

[1] R. Ihaka, and R. Gentleman, “R: A language for data analysis and
graphics,” Journal of Computational and Graphical Statistics, vol. 5, pp.
299-314, 1996.

[2] N. Diakopoulos, and S. Cass, “Interactive: The Top Programming
Languages 2017,” https://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2017, July 2017, consulted on January 17th,
2018.

[3] E. Huber, and G. Hans, “R-package with S4 classes for ground-
penetrating radar (GPR) data visualization, analysis, and processing”,
https://github.com/emanuelhuber/RGPR, consulted on January 17th,
2018.

[4] H. Wickham, W. Chang, RStudio, and R Core team, “devtools: Tools to
Make Developing R Packages Easier”, https://cran.r-
project.org/web/packages/devtools/index.html, November 2017,
consulted on January 17th, 2018.

[5] H. Wickham, P. Danenberg, M. Eugster, and RStudio, “roxygen2: In-
Line Documentation for R”, https://cran.r-
project.org/web/packages/roxygen2/index.html, February 2017,
consulted on January 17th, 2018.

Fig. 2. (A) Graphical output of the 'plot()' method applied to an object of the GPRsurvey class superimposed on a raster elevation data: the black lines represent

the GPR profile coordinates in the Swiss coordinate system, the red dots the fiducial markers, and the red arrows the survey direction. (B) Graphical output of the
'plot3DRGL()' method applied to an object of the GPRsurvey class: GPR fence diagram corresponding to (A).

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://github.com/emanuelhuber/RGPR
https://cran.r-project.org/web/packages/devtools/index.html
https://cran.r-project.org/web/packages/devtools/index.html
https://cran.r-project.org/web/packages/roxygen2/index.html
https://cran.r-project.org/web/packages/roxygen2/index.html

[6] C. Schmelzbach, and E. Huber, “Efficient Deconvolution of Ground-
Penetrating Radar Data”, IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, pp. 5209-5217, April 2015.

[7] F. Lehmann, and A. G. Green, “Topographic migration of georadar data:
Implications for acquisition and processing”, Geophysics, vol. 65, pp.
836-848, May-June 2000.

[8] J.-R. Dujardin, and M. Bano, “Topographic migration of GPR data:
Examples from Chad and Mongolia”, Comptes Rendus Géoscience, vol.
345, pp.73-80, February 2013.

[9] K. Tabelow, and J. Polzehl, “adimpro: Adaptive Smoothing of Digital
Images”, https://cran.r-project.org/web/packages/adimpro/index.html,
September 2016, consulted on January 25th, 2018.

[10] D. Adler, and D. Murdoch, “rgl: 3D Visualization Using OpenGL”,
https://cran.r-project.org/web/packages/rgl/index.html, January 2018,
consulted on January 25th, 2018.

[11] S. Urbanek, and J. Horner, “Cairo: R graphics device using cairo
graphics library for creating high-quality bitmap (PNG, JPEG, TIFF),
vector (PDF, SVG, PostScript) and display (X11 and Win32) output”,
https://cran.r-project.org/web/packages/Cairo/index.html, September
2015, consulted on January 17th, 2018.

[12] S. Urbanek, “jpeg: Read and write JPEG images”, https://cran.r-
project.org/web/packages/jpeg/index.html, January 2014, consulted on
January 17th, 2018.

[13] J.R. Ernst, H. Maurer, A. G. Green, and K. Holliger, “Full-waveform
inversion of crosshole radar data based on 2-D finite-difference time
domain solutions of Maxwell’s equations”, IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, pp. 2807-2828, August 2007.

https://cran.r-project.org/web/packages/adimpro/index.html
https://cran.r-project.org/web/packages/rgl/index.html
https://cran.r-project.org/web/packages/Cairo/index.html
https://cran.r-project.org/web/packages/jpeg/index.html
https://cran.r-project.org/web/packages/jpeg/index.html

	I. Introduction
	II. Package installation
	III. Package structure
	A. General overview
	B. The GPRsurvey class
	C. The GPRvirtual abstract class

	IV. available functions and methods
	A. Creating a GPR object
	B. Analysis and processing methods
	C. GPRsurvey methods
	D. Writing files

	V. What’s next?
	A. Short term improvements
	B. Long term perspectives

	VI. Conclusion
	Acknowledgment
	References

