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A B S T R A C T

Hydrogeological flow and transport strongly depend on the connectivity of subsurface properties. Uncertainty
concerning the underlying geological setting, due to a lack of field data and prior knowledge, calls for an
evaluation of alternative geological conceptual models. To reduce the computational costs associated with in-
versions (parameter estimation for a given conceptual model), it is beneficial to rank and discard unlikely
conceptual models prior to inversion. Here, we demonstrate an approach based on a quantitative comparison of
ground-penetrating radar (GPR) sections obtained from field data with corresponding simulation results arising
from various geological scenarios. The comparison is based on three global distance measures related to wavelet
decomposition, multiple-point histograms, and connectivity that capture geometrical characteristics of geo-
physical reflection images. Using field data from the Tagliamento braided river system, Italy, we demonstrate
that seven out of nine considered geological scenarios can be discarded as they produce GPR sections that are
incompatible with those observed in the field. The retained scenarios reproduce important features such as cross-
stratified deposits and irregular property interfaces. The most convenient distance measure of those considered is
the one based on wavelet-decomposition. Direct analysis of the distances is the most intuitive and fastest way to
compare scenarios.

1. Introduction

Reliable predictions of groundwater flow and contaminant transport
require adequate characterization of subsurface properties and their
connectivity (e.g., Gómez-Hernández and Wen, 1998; Zinn and Harvey,
2003). In this regard, limited number of data and knowledge of the field
site implies that multiple geological conceptual models must be initially
considered. That is to say models with different geometrical char-
acteristics of the deposits, such as channels, lenses or layers. A general
approach to compare alternative geological conceptual models is to
perform Bayesian model selection based on field data acquisition and
inversion. It aims at estimating the Bayes factors, that is, the ratios of
the estimated evidences (i.e., the integral of the likelihood over the
prior probability density function) for the considered scenarios (Kass
and Raftery, 1995; Schöniger et al., 2014). However, reliable evidence
estimators are costly because they necessitate a very large number of
numerical evaluations of property models. As a result, modelers often
assume a single conceptual model (Ferré, 2017) on which they perform
inversion on the distribution of physical properties such as hydraulic

conductivity, porosity or storativity (Carrera and Neuman, 1986;
Højberg and Refsgaard, 2005; Eaton, 2006) for a given geological
conceptual model. The main risks associated with such a practice is
underestimation of uncertainty and biased parameter distributions and
predictions. There is, thus, a need for efficient, albeit more approx-
imate, ways to compare alternative geological scenarios without re-
sorting to formal evidence computations.

To enable comparison of geological conceptual models using a re-
duced number of costly forward simulations, Park et al. (2013) draw
property models from each of the considered scenarios and calculate
their data response. They then use multi-dimensional scaling (MDS) to
reduce dimensionality, followed by adaptive kernel smoothing to esti-
mate the probability of each scenario by comparing its distance to the
reference data. Sometimes, it can be beneficial to base such compar-
isons on data types other than classical hydrogeological data (Huber
and Huggenberger, 2016). Non-invasive geophysical data, for example,
can provide substantial information about connectivity, structure di-
mensions and orientations, and thus might help to reduce geological
conceptual model uncertainty. Notably, geophysical images reflect the
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sensitivity of the employed method to subsurface property variations.
Thus, they can provide information about length scales and orientation
characteristics of significant property boundaries. The wide range of
available geophysical techniques offer flexibility to adjust resolution or
depth of investigation, and to maximize the sensitivity to subsurface
properties of interest (Hubbard and Rubin, 2005). For instance, com-
parisons of seismic images (Scheidt et al., 2015) or of electric resistivity
tomography (ERT) images (Hermans et al., 2015) offer possibilities to
falsify scenarios or reduce conceptual model uncertainty.

Possibly the simplest way to quantitatively compare geophysical
images is to use a distance based on pixelwise (one-to-one) local com-
parison (Hermans et al., 2015). However, by using a local comparison,
the probability of sharing a majority of similar pixel values and thus to
observe small distances is quite low. So, when the main interest lies in
the comparison of patterns and not the specific locations of property
values, approaches relying on global geometrical characteristics are
better suited. Approaches to sort and classify images in this way has
been widely studied in the field of image processing (Smeulders et al.,
2000). Among many alternatives, those based on discrete wavelet
transforms have proven efficient to identify the images that are the
closest in a large database. Suzuki and Caers (2008) and Scheidt and
Caers (2009) use a distance based on wavelet decomposition (Mallat,
1989) of geological realizations for different scenarios to represent
spatial uncertainty. Scheidt et al. (2015) further apply this type of
metric on seismic images to update probabilities of alternative prior
scenarios. Nevertheless, distances based on wavelet decomposition rely
on the comparison of coefficient histograms, which might hide spatial
characteristics such as pattern connectivity. It is, thus, important to also
consider other distances, for instance, based on multiple-point histo-
gram (Boisvert et al., 2010) or connectivity analysis (Renard and Allard,
2013; Meerschman et al., 2013), that allow quantitative comparison of
the global spatial characteristics of interest obtained from field data
with those obtained from synthetic modeling based on various sce-
narios.

So far and to the best of our knowledge, quantitative approaches to
reduce conceptual geological model uncertainty using image compar-
isons did not consider multiple distance types and there has been no
such application to GPR data. Traditionally, GPR data are interpreted
qualitatively and its quantitative integration in subsurface modeling is
largely unexplored. In the continuity of previous related works (Park
et al., 2013; Pirot et al., 2014; Scheidt et al., 2015; Hermans et al.,
2015), we propose to extend such approaches to GPR reflection sec-
tions, using different distance measures of global geometrical char-
acteristics. The three types of distances considered herein for the
comparison of GPR reflection sections are based on 1) wavelet de-
composition, 2) multiple-point histogram and 3) connectivity functions.
In addition, the computed distances are analyzed and interpreted with a
simple intuitive approach and with a more complex formal approach
based on dimensionality reduction and mapping techniques.

The objectives of this work are i) to demonstrate how a simple but
robust method enables the comparison of global characteristics of GPR
reflection sections obtained from field data processing with those ob-
tained from GPR reflection sections simulated from different scenario
realizations; ii) to verify that GPR reflection sections can be used to
reduce geological conceptual model uncertainty; iii) to investigate the
relative strengths of three different distance measures for GPR data; and
iv) to present follow-up strategies depending on the closeness or re-
moteness of simulated sections with reference sections obtained from
field measurements. To illustrate the proposed method, we consider
GPR profiles acquired on the riverbed of the Tagliamento River,
Northeast Italy (Huber, 2015). We consider three different geological
conceptual models; each one of them being sub-divided in three sets of
parameters (scenarios). For each of the nine resulting scenarios, 20
stochastic aquifer realizations are used as inputs for GPR simulations.
The distances are used to produce a first ranking and to falsify unlikely
scenarios. A dimension reduction technique called multi-dimensional

scaling (MDS) followed by kernel smoothing are then used to estimate
scenario probabilities.

The paper is organized as follows. Section 2 describes the distance
measures considered and how they can be used to update scenario
probabilities. Section 3 presents a field-demonstration using GPR sec-
tions simulated from realizations of different geological conceptual
geological models of the Tagliamento site (subSection 3.1). This section
continues with the presentation of the migrated field GPR data and its
processing steps (subSection 3.2), and ends with the simulation of mi-
grated GPR profiles (subSection 3.3). Section 4 displays the results,
which are further discussed in Section 5. Conclusions are given in
Section 6.

2. Distances between geophysical images and estimation of
scenario probabilities

In this section, we briefly review three distance measures that can
be used to compare global geometrical characteristics of geophysical
images. We then describe how approximate scenario probabilities can
be obtained from field and simulated data through MDS and adaptive
kernel smoothing (Park et al., 2013).

2.1. Wavelet decomposition

One way to extract global characteristics of an image is wavelet
decomposition (Mallat, 1989). We consider in our work the same de-
composition as Scheidt et al. (2015). Two geophysical images i1 and i2
are decomposed in two levels by a “Haar” wavelet (Haar, 1910), which
produces a series of coefficients (horizontal, vertical, diagonal and ap-
proximation) for each level. At each level, the histogram of each coef-
ficient is discretized into bins ∈ …b B1 , using the same binning for both
images. For each level ∈ …m M1 and each coefficient ∈ …c C1 , a dis-
tance dJS between the two images is computed based on the Jensen-
Shannon divergence between the probability distributions Pm c
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2.2. Multiple-point histogram

Another way to quantify global spatial characteristics of an image is
to define a summary statistic describing its multiple-point histogram
(Boisvert et al., 2010). In multiple-point statistics (MPS), a pattern is
usually defined as a set of values associated with relative coordinates
that define a spatial configuration. Two patterns are distinct when the
values are different at one of the relative coordinates. The multiple-
point histogram (MPH) of an image is defined for a given spatial con-
figuration, also called search window, as the occurrence list of distinct
patterns. Here we use the Impala (Straubhaar et al., 2013) software to
compute multiple-point histograms from categorical geophysical
images. Note, however, that the measure can be adapted to deal with
continuous geophysical images (see Section 5.2). Multiple-point histo-
grams are computed at M multigrid levels m, to account for patterns at,
relatively speaking, small, intermediate and large scales (Tran, 1994). A
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multigrid is practical to account for larger scale structures while
keeping the pattern geometry and, thus, the computing time reason-
able. Each histogram is limited to the O most frequent patterns o. By
denoting fi

o m, the frequency of pattern o at level m in image i, the
multiple-point histogram based distance Dmph between image i1 and
image i2 is defined as:

∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ =

− × +

× ×= =

D i i
f f f f

M O
,

( )

2
.mph

m

M

o

O
i
o m

i
o m

i
o m

i
o m

1 2
1 1

, , , ,
1 2 1 2

(3)

2.3. Connectivity measure

The final measure that we consider to quantify global characteristics
of an image is connectivity (Renard and Allard, 2013). Indeed, sub-
surface property connectivity dictates subsurface flow paths and
transport. Here we consider categorical geophysical images, but note,
that the measure can be adapted to deal with continuous geophysical
images (Pirot et al., 2014b). We consider connectivity as the probability
that two pixels belonging to the same class (a range of values) are
connected, as a function of the distance and direction, similarly to the
definition of a directional semi-variogram (Matheron, 1963). By de-
noting C i a l( , , ) the connectivity measure of a discrete image i along
axis ∈ …a A1 for a distance lag ∈ …l L1 , the connectivity distance
D i i( , )c 1 2 between discrete images i1 and i2 can be computed
(Meerschman et al., 2013) as
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2.4. Estimation of scenario probabilities

To assess the probability of a scenario given a geophysical section,
we follow the approach by Park et al. (2013). Given a distance metric D
and an ensemble of I images i, the distance between all pairs i i,j k of
images define a dissimilarity matrix =δ D i i( , )jk j k . Multidimensional
scaling (MDS, Cox and Cox, 2000) is a method to represent the images
as points in a low dimensional space, usually Euclidean. While principal
component analysis (PCA) requires point coordinates, MDS can be used
on data for which only the relative distances are known. This lower
dimensional space is searched, such that the distances djk between the
points are as close as possible to the original dissimilarity matrix δjk.
MDS allows to map images in space, as points, for instance in 2D if
using the two main dimensions. Now, we consider reference points
related to reference images and a cloud of points related to images
derived from a scenario. We can approximate the density of the cloud at
any location of the low dimensional space, using adaptive kernel
smoothing (Ebeling et al., 2006). For each scenario s, the density at one
or several reference points (in the low dimensional space) can be
computed as a scalar ρs. The updated probability P of scenario s can
then be approximated as = ∑P s( ) ρ s

ρ s
( )

( )s
. These updated probabilities are

relative to the ensemble of considered scenarios, with P s( ) the prob-
ability that an image generated from scenario s is the closest to the
reference image.

3. Field application and GPR modeling

A pre-requisite to compare field and simulated data (Fig. 1) is to
apply equivalent data processing (Hermans et al., 2015), but this is
rarely sufficient because actual field conditions always differ from nu-
merical implementations. Indeed, results obtained from the processing
of geophysical data are prone to errors (e.g., Linde, 2014) related to
field data acquisition, simplifications in physical modeling or con-
sequences of numerical modeling such as numerical and geometrical
approximations. For instance, seismic or GPR geophysical images

obtained from field data might include false discontinuities and their
interpretation in terms of continuous connected structures or interface
delineation necessitates expert knowledge. On the contrary, seismic or
GPR geophysical images obtained from forward modeling, might re-
produce property (dis) continuities too well and appear too clean to be
representative of what would be expected for real data. To further re-
duce the remaining gaps between the results obtained from field data
and from synthetic scenarios, it is necessary to include fit for purpose
filtering (Green et al., 1988; Panagiotakis et al., 2011) such that geo-
physical sections are not dominated by details/aspects that we do not
seek to reproduce.

3.1. Study site and geological conceptual models

The study site considered is a portion of a sandy-gravel aquifer lo-
cated near the city of Flagogna, Italy, within a portion of the active bed
of the gravelly braided Tagliamento river (Fig. 2). The Tagliamento
river flows in the Friuli Venezia Giulia region, northeastern Italy, from
the Carnian Alps to the Adriatic Sea. As the Tagliamento river is one of
the few remaining large semi-natural rivers in the Alps (Ward et al.,
1999) it was chosen as a study site to characterize the link between the
topography of the active river bed and subsurface properties (Huber
and Huggenberger, 2015). GPR data acquisitions and interpretations
allowed to improve the characterization of scours and to model them
(Huber et al., 2016). In addition to improving the understanding of
deposition and erosion processes (Huber and Huggenberger, 2016), this
work inspired modelers to develop new methods, such as a pseudo-
genetic approach to produce heterogeneous models of braided-river
aquifers (Pirot et al., 2015b).

Assuming a braided-river type of aquifer, we wish to investigate
which geological conceptual model is best suited to represent the por-
osity field. To this end, we consider subsets of reflection GPR sections in
the saturated zone. Indeed, below the water table, GPR responses are
strongly dependent on the porosity variations in the subsurface
(Daniels, 2004). We consider three different types of conceptual models
of porosity, similar to those considered by Pirot et al. (2015a) in their
assessment of the impact of geological conceptual models on

Fig. 1. Overview of the workflow to reduce geological conceptual model un-
certainty. On the left, the path of arrows represents field data processing; on the
right, the three vertical arrow paths represents the workflow for three distinct
scenarios; at the bottom, a red cross illustrates scenario falsification and a green
mark indicates scenario compatibility.
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contaminant transport. Each type of geological conceptual porosity
model is sub-divided into three sets of parameter values (scenarios)
with geometrical features (patterns) that present different length scales
(Fig. 3). Here we further assume that the braided-river aquifer is

composed of three structural elements: gray gravel (GG), bimodal (BM)
and open-framework (OW) deposits. Each distinguishable geobody or
sedimentary deposit is a assigned a randomly drawn value from the
porosity distribution, related to its structural element (Jussel et al.,
1994), as described in Table 1. The models are characterized by a
horizontal discretization of m0.25 and a vertical discretization of m0.01 .

The first geological geological conceptual model is represented by
realizations from a pseudo-genetic (PG) algorithm (Pirot et al., 2015b),
which mimics deposition and erosion steps by stacking successive si-
mulated topographies, and by imitating sandy-gravel material transport
and deposition. Here, the main layers are populated with GG elements
and the resulting cross-stratified deposits by successive BM and OW
elements. A second geological geological conceptual model is a trun-
cated multi-Gaussian (MG) model (Emery and Lantuéjoul, 2006), in

Fig. 2. Site location in Italy (map fromhttp://www.pedagogie.ac-aix-marseille.fr/jcms/c_67064/en/cartotheque); position of the GPR profiles over an aerial pho-
tograph of the Tagliamento river, south east of Flagogna (Google maps satellite image).

Fig. 3. Example porosity sections for different
geological scenarios that are to be compared to
(a) a reference GPR reflection section processed
from field data (REF01); (b), (c) & (d) porosity
sections from pseudo-genetic model realizations
for parameter sets PG1, PG2 & PG3, respectively;
(e), (f) & (g) porosity sections from truncated
multi-Gaussian model realizations for parameter
sets MG1, MG2 & MG3, respectively; (h), (i) & (j)
porosity sections from object-based model reali-
zations for parameter sets OB1, OB2 & OB3, re-
spectively.

Table 1
Probability density function (pdf) properties of the porosity for each structural
element (from Jussel et al. (1994)).

Structural Element Pdf Law Porosity Mean
(%)

Porosity Standard Deviation
(%)

GG Normal 20.1 1.4
BM Normal 18.8 3.9
OW Normal 34.9 1.4
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which the locations above the highest threshold are populated with OW
elements, the location between the two thresholds are defined as BM
elements, and the remaining matrix is populated with GG elements. The
third geological geological conceptual model is an object-based (OB)
model (Huber et al., 2016) mathematically defined as a compound
marked Strauss process. The OB simulates the formation of spoon-
shaped structures on the river bed and the subsequent deposition of
sediments over the whole river bed. The spoon-shaped structures are
modeled by truncated ellipsoids with an internal OW-BM cross-bedding
and the sediments deposited on the river bed by horizontal layers of GG
(e.g., Beres et al., 1999; Huggenberger and Regli, 2006). The para-
meters underlying each scenario are summarized in Table 2; they were
chosen to approximate the dimensions of scours that were estimated
from field observations and from interpretations of migrated GPR sec-
tions.

3.2. GPR data acquisition and processing

The reflections in the processed and migrated GPR sections provide
indirect information about characteristic geometric features. Such sec-
tions are used herein to compare, based on various global distance
measures, different types of geological conceptual models. Five GPR
profiles (REF01 to REF05) were acquired on the Tagliamento riverbed,
orthogonally to the main flow direction. REF01 section is used for
comparison with simulated data, while REF02 to REF05 are used to
assess on-site data variability. The GPR data were acquired with a
PulseEkko Pro GPR system (Sensors & Software Inc., Mississauga,
Canada) using 100MHz antennas and a measurement spacing of 0.25 m.

A common mid-point (CMP) was performed to estimate the mean GPR
velocity. The data processing steps are described in Table 3 and they
were carried out with the RGPR package (Huber and Hans, 2017). The
migrated section corresponding to the REF01 profile is presented in
Fig. 3a.

The processed migrated sections are thresholded into binary images
to focus on the predominant aspects of the reflections. The amplitude of
the processed GPR reflection section is similar throughout the image
after applying the automatic gain control. Consequently, at all inter-
faces where porosity changes, the signal amplitude is similar, in-
dependently of the porosity contrast. We consider the first (negative)
and last (positive) quartiles of the signal amplitude in the section. We
retain the last quartile of the reflections (positive amplitude) to define
Class 1. Tests (not shown) indicated that it was not necessary to retain
the first quartile (negative amplitude) to define another class, as the
corresponding class would have almost the same geometrical char-
acteristics as those of Class 1. Therefore, we use amplitudes below the
75th percentile to define Class 2 (Fig. 5a).

3.3. From aquifer porosity models to GPR reflection sections

In order to estimate the distances of each scenario realization to the
reference GPR sections REF01, GPR reflection sections are simulated
from the corresponding 2D porosity sections. The processing steps are:

1. Realization of a facies/porosity model according to a geological
conceptual model (scenario) as described in Section 3.1.

2. Porosity fields are converted into electrical property fields and

Table 2
Parameter choices for each scenario grouped by type of geological conceptual model.

Scenario Example Parameters

Scalability Scalability Aggradation Number of Deposition
Width Depth Range (m) Iterations Intensity

PG1 Fig. 3b 1 1 [0.05 ; 0.125] 8 5
PG2 Fig. 3c 1/2 1.6 [0.05 ; 0.125] 8 5
PG3 Fig. 3d 1/3 1 [0.2 ; 0.25] 6 3.5

Variogram Horizontal Vertical OW element BM element
Model Range (m) Range (m) Proportion Proportion

MG1 Fig. 3e exponential 50 3 25% 25%
MG2 Fig. 3f exponential 25 0.5 25% 25%
MG3 Fig. 3g exponential 70 5 25% 25%

Width Width/height Layer Poisson Horizontal Strauss process
Range (m) Ratio Process (λ) β γ

OB1 Fig. 3h [10 ; 20] [11 ; 18] 0.1 −10 3 0.5
OB2 Fig. 3i [22 ; 33] [11 ; 18] 0.1 −5 10 4 1
OB3 Fig. 3j [35 ; 53] [11 ; 18] 0.1 −2.5 10 4 1

Table 3
Processing steps applied to field GPR reflection data.

Step Description

1 DC-shift
2 Time zero correction
3 Dewow to remove the low frequency trend in the signal
4 Band pass filter to remove noise ( < <7 signal 200 MHz, defined as a stepwise linear function between, 5,10,170 & 250MHz)
5 Power gain & exponential gain ( =α 1) to correct for geometric spreading and attenuation depth (Kruse and Jol, 2003; Grimm et al., 2006)
6 Dewow to correct for the deviation from zero that is reinforced by the power and exponential gains
7 Topographic Kirchhoff migration with a constant velocity =vel 100 m/μs
8 1D vertical Gaussian (standard deviation =σ 2.5 cm) low-pass filter to lightly smooth the migrated image and get rid of persisting high frequency noise
9 Automatic gain control to balance signal amplitudes (standard deviation of the Gaussian filter =σ 0.45 m, power used to compute the p-norm =p 2 & =r p1/ ; see

Rajagopalan and Milligan (1994), for more details)
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velocity fields using the model by Pride (1994). The petrophysical
parameters (cementation index m, and dielectric constant of solid
grains κs) are calibrated, such that the mean velocity of the corre-
sponding porosity field is the same as the one used for the field data
migration ( =vel 100 m/μs).

3. Construction of a perfectly migrated GPR section (following the
method developed by Irving et al. (2010)) by convolution of the
propagated wavelet with a Primary Reflectivity Section. The pro-
pagated wavelet is estimated from field data processing step 5 (ac-
cording to the method by Schmelzbach and Huber (2015)). The
Primary Reflectivity Section is derived from the previously obtained
velocity model. A simple Gaussian horizontal filter is applied on the
convolution result, to account for the Fresnel zone and whose width
is determined by the dominant signal wavelength.

4. To mimic the effect of a constant velocity migration, the GPR re-
flection section generated with the actual velocities predicted from a
porosity model is converted in the time domain before being back
transformed into the depth domain using the same mean velocity as
the one used in the migration of the field data ( =vel 100 m/μs), and
finally re-interpolated over a regular grid on the vertical axis.

5. 1D vertical Gaussian filter to slightly smooth the propagated wavelet
with the same parameter as the one applied in the processing of the
field data.

6. Automatic gain control to balance signal amplitudes with the same
parameters as the one applied in the processing of the field data.

The resulting synthetic GPR sections (Fig. 4b–j) are thresholded into
binary images in the same way as the field data. The binary images
resulting from the porosity images in Fig. 3b–j are given in Fig. 5b–j.

4. Results

For each of the three types of geological conceptual models and
each of the three corresponding parameter sets (i.e., the nine con-
sidered scenarios), we generated 20 porosity realizations. This means,
that a total of 180 binary images were available for comparison with
the binary reference section REF01 (Fig. 5a). Wavelet-based, multiple-
point histogram, and connectivity distance measures were computed
between all possible pairs of field and synthetic binary images as fol-
lows. The wavelet-based distance uses =B 50 bins and =M 2 (multi-
grid) levels. The MPH-based distance relies on a ×5 5 pixels search-
window, =M 3 multi-grid-levels and on the =O 30 most frequent
patterns. The connectivity-based distance is defined for =A 2

directions (section length axis x or section depth axis z); the in-
vestigated distances are limited to half the model dimensions, de-
pending on the axis, and the number of lags is set to =L 25. For each
distance type, the distance values are normalized by their maximum.

The distances obtained between all binary images and the
Tagliamento reference section REF01 are displayed and grouped for
each distance type by geological scenario (Fig. 6). To indicate the in-
ternal variability of the distances between the actual field data, the
distances between binary reference section REF01 and other binary
reference sections (REF02 to REF05) are gathered in a group denoted
“REF”. An acceptance threshold is defined by multiplying by 1.2 the
maximum REF distance value. This subjectively-chosen acceptance
threshold is used to select realizations whose distances to REF01 is si-
milar to those of the reference sections.

The distances between the primary reference and the scenarios PG2,
MG1, MG2, and MG3 are the smallest for the wavelet-based and MPH-
based distances. For PG2, the values are close to those of the REF dis-
tances, while the MG1, MG2, and MG3 ensembles have mean values
that are lower (MG2) or slightly higher (MG1 and MG3) than the ac-
ceptance threshold. The connectivity-based distance values are more
scattered within each scenario, but most of the PG1, PG2, PG3, and all
but one of the MG2 realizations are below the acceptance threshold.
The OB1, OB2, and OB3 scenarios are the furthest from the acceptance
thresholds for all distance measures considered.

To better understand the generally-better performance of the PG-
family as judged by the connectivity-based distance, we present con-
nectivity functions in Fig. 7 for some of the sections displayed in Fig. 5.
For the Class 1 components, the horizontal connectivity function
(Fig. 7a) is best reproduced by PG2, while the connectivity is over-
estimated for MG2 (by ≈ 0.08) and severely overestimated for OB1 (by
0.1–0.5). The vertical connectivity function (Fig. 7b) is best reproduced
by MG2, while it is slightly too high for PG2 (at most ≈ 0.05 between
0.4 m and 0.9m) and far too high for OB1 (by 0.1–0.2). For the hor-
izontal and vertical connectivity functions of the Class 2 components
(Fig. 7c and d), MG2 is found to reproduce them the best, while the
connectivity is slightly lower for PG2 (by ≈ −0.02) and much too small
for the OB1 scenario (up to −0.2).

To highlight the relationships between the distance types, we dis-
play three scatter plots (Fig. 8). A piecewise linear correlation between
wavelet-based and multiple-point histogram distances is clearly visible
in Fig. 8a, in which a first segment corresponds to the PG and MG
scenarios and a second to the OB scenarios. It also shows the ability of
wavelet-based and multiple-point histogram distances to distinguish

Fig. 4. (a) Processed and migrated GPR reflec-
tion section from field data (REF01); (b), (c) &
(d) GPR reflection sections simulated from
pseudo-genetic porosity model realizations for
parameter sets PG1, PG2 & PG3, respectively;
(e), (f) & (g) GPR reflection sections simulated
from truncated multi-Gaussian porosity model
realizations for parameter sets MG1, MG2 &
MG3, respectively; (h), (i) & (j) GPR reflection
sections simulated from object-based porosity
model realizations for parameter sets OB1, OB2
& OB3, respectively.
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between the different conceptual models and some scenarios that
cluster in different groups. A log-linear relationship with a low corre-
lation between the connectivity- and the wavelet-based distances is
visible in Fig. 8b. A piecewise and scattered log-linear relationship
between the connectivity- and the MPH-based distances is visible in
Fig. 8c, in which the first segment corresponds to the PG and MG sce-
narios and a second to the OB scenarios.

For each distance measure considered, the distances for all pairs of
images are used to estimate the density of each scenario in the low
dimensional space obtained by MDS. To estimate the updated prob-
ability of each scenario (Table 4), we limit the number of dimensions
used such that 95% of the information is recovered. To achieve this, the
two first MDS dimensions are sufficient for the wavelet-based distance,

14 are necessary for the multiple-point-based distance, and three are
enough for the connectivity-based distance. For each distance, the es-
timated probability for a given scenario is proportional to the density of
the cloud composed by the scenario realizations at the location of the
reference section REF01 in the MDS space. It informs about the prob-
ability that a realization from a scenario is closer to the reference sec-
tion REF01 relative to the considered scenarios. Considering the wa-
velet-based distance, with an estimated probability of 85.9%, PG2 is the
most probable scenario and MG1 is the second most likely one (14.1%).
For the multiple-point histogram distance, PG2 is by far the most
probable scenario (99.9%). For the case of the connectivity-based dis-
tance, MG2 is judged more likely (47.9%) than PG2 (33.6%) followed
by PG1 (12.7 %), because it has fewer high and also the smallest

Fig. 5. Images obtained after thresholding the
example sections represented in Fig. 4. (a) The
binary geophysical image obtained from field
data; (b), (c) & (d) binary geophysical images
obtained from pseudo-genetic porosity model
realizations for parameter sets PG1, PG2 & PG3,
respectively; (e), (f) & (g) binary geophysical
images simulated from truncated multi-Gaussian
porosity model realizations for parameter sets
MG1, MG2 & MG3, respectively; (h), (i) & (j)
binary geophysical images simulated from ob-
ject-based porosity model realizations for para-
meter sets OB1, OB2 & OB3, respectively.

Fig. 6. Distance to Tagliamento reference sec-
tion REF01; plots grouped by scenario for (a)
wavelet-based distance, (b) MPH-based distance
and (c) connectivity-based distance. REF denotes
distances for other binary reference sections
(REF02-REF05) with respect to REF01 and the
red line corresponds to the acceptance threshold.

Fig. 7. Example of connectivity functions for a
selection of binary geophysical images (REF01,
PG2 sim, MG2 sim & OB1 sim from Fig. 5); (a)
horizontal connectivity functions for Class 1
(white) components; (b) horizontal connectivity
functions for Class 1 (white) components; (c)
horizontal connectivity functions for Class 2
(gray) components; (d) horizontal connectivity
functions for Class 2 (gray) components.
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distance value. If we average the probabilities over the types of dis-
tances considered, the scenarios that produce realizations that are the
closest to the Tagliamento reference section REF01 is PG2, followed by
MG2.

5. Discussion

5.1. Geological scenario falsification at the Tagliamento study site

By using three different distance metrics quantifying the agreement
between field and simulated GPR sections, we reduce geological con-
ceptual model uncertainty at the Tagliamento site. The direct analysis
of the distances (Figs. 6 and 8) and the estimated probabilities for each
type of distance (Table 4) led to similar conclusions. For the nine sce-
narios considered, two are judged significantly more suitable than the
others: the PG2 scenario is the most suitable (its realizations are the
closest to the Tagliamento reference section REF01), followed by the
MG2 scenario. For both the wavelet-based and multiple-point histo-
gram distances, PG2 is the most probable scenario. In the case of the
connectivity-based distance, MG2 is judged the most probable scenario,
followed by PG2.

To understand these rankings, let us consider the binary reference
section (Fig. 5a). It reveals that: i) Class 1 components (main reflectors)
have very small, small, intermediate and long length scales; ii) Class 1
components are sub-horizontal, and smaller components might present
a stronger dip; iii) the interface between Class 1 and Class 2 components
is irregular; iv) Class 2 components form a connected matrix. For the
PG2 scenario realizations (Fig. 5c), characteristic (i), (ii) & (iv) are
present, but the interfaces are smooth. For MG2 scenario realizations
(Fig. 5f), characteristic (i), (iii) & (iv) are present, but the Class 1
components are too horizontal. The fact that scenarios PG2 and MG2
realizations fulfill three of these four visual criteria might explain the
acceptable distance of their realizations to the Tagliamento reference
section REF01. For the OB3 scenario realizations, none of the four
criteria is fulfilled, which results in high values for all types of distance

measures. From these results, it seems that the representation of cross-
stratified deposits, interface roughness, and partially disconnected in-
terfaces are important to reproduce reflection GPR sections at the Ta-
gliamento site.

None of the proposed OB scenarios match the Tagliamento reference
section REF01. We see two main possible explanations: 1) the geome-
trical parameters of this conceptual model were not well chosen, that is,
the size of the scours and the layer thickness might be too large, the
density of scours too small, the inner structure of the scours (i.e. inside
the truncated semi-ellipsoids) have too thick deposits, when compared
to the PG scenarios; or 2) this conceptual model is inherently unsuitable
for this site (e.g., interfaces at porosity changes are too clean, without
any contour irregularities or apparent roughness when compared to MG
scenarios). This discussion also highlights that identifying the main
characteristics present in the reference images and analyzing their ab-
sence or presence in images derived from various scenarios may help to
propose new conceptual models or scenarios. This suggests a possible
iterative process in which initial results are used to guide improvements
in the conceptual models considered.

5.2. Comparison of distance measures

We now interpret our results to identify which distance-types are
the most suitable. We observe a piecewise linear relationship between
the wavelet-based distance and MPH-based distance (Fig. 8a). Since
there is less overlap between scenarios along the wavelet-based dis-
tance axis (Fig. 8a and b), we conclude that it is more suitable than the
MPH-distance to rank geological conceptual models and, to a lesser
extent, their most appropriate parameters. However, the MPH-based
distance is also able to classify models according to their geological
conceptual model and scenarios (Fig. 8a and c), but it performs less well
than the wavelet-based distance to distinguish scenario PG3 from OB
scenarios. This distance appears to better account for local structures
(similar patterns between PG and OB) while the wavelet-based distance
better accounts for global structures (different shapes: truncated ellip-
soids versus the structures of PG models). Indeed, MPS algorithms often
have difficulties in reproducing large scale connectivity even when
using multi-grid levels (Strebelle, 2002; Mariethoz et al., 2010; Rongier
et al., 2013).

The connectivity-based distances differ the most from the other
distances and they display a weak log-linear relationship with the wa-
velet-based distances. They are effective in rejecting the MG1, MG3 and
all OB scenarios. The connectivity-based distance clearly separate the
OB models from the other model classes (as shown by Figs. 6c and
8b–d) as the reflectors (Class 1) in the OB models are much too con-
nected in length. A corollary of this is that the background Class 2 is less
connected (see Fig. 7).

Overall, the results suggest that the wavelet-based distance provides
the best ability for scenario differentiation. The connectivity-based
distance is also interesting because it adds information and helps re-
fining the scenario selection. Moreover, the connectivity-based distance

Fig. 8. Distance to Tagliamento reference sec-
tion REF01 visualized as scatter plots grouped by
scenario: (a) MPH-based distance as a function of
wavelet-based distance; (b) connectivity-based
distance as a function of wavelet-based distance;
(c) connectivity-based distance as a function of
MPH-based distance. REF denotes other binary
images processed from additional GPR profiles
(REF02-REF05) acquired at the study site and
the red line corresponds to the acceptance
threshold.

Table 4
Estimated scenario probabilities (%) computed for each type of distance by
adaptive kernel smoothing on MDS representations of the simulated and re-
ference sections; values smaller than 0.1% are not displayed; for each type of
distance (row) the probabilities sums to 100%.

Scenarios

Distance Based on PG1 PG2 PG3 MG1 MG2 MG3 OB1 OB2 OB3

Wavelet
Decomposition

– 85.9 – 14.1 – – – – –

Multiple-Point
Histogram

– 99.9 – – – – 0.1 – –

Connectivity
Function

12.7 33.6 5.5 – 47.9 – 0.3 – –

Average 4.2 73.1 1.8 4.7 16.0 – 0.1 – –
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is particularly interesting if the final application includes transport si-
mulations, whose outcome strongly depends on property connectivity.
We also would like to point to previous work (Pirot et al., 2014), which
showed that the MPH-based distance is more sensitive to the sign of
property contrasts while wavelet-based distance is more sensitive to the
magnitude of property contrasts. Other fit-for-purpose distances could
be considered and global integrative distances, i.e. that combine mul-
tiple global distance types could also be useful.

5.3. Influence of ranking method and parameter choices

We have seen that scenario falsification can be performed either by
direct analysis of the distances or by estimation of updated probabilities
per scenario using MDS followed by adaptive kernel smoothing. On the
one hand, direct analysis of distances requires several reference images
to define a reasonable acceptance threshold. On the other hand, the
estimations of updated probabilities per scenario necessitate the com-
putation of distances for all pairs of images within the ensemble com-
posed of reference and simulated images. Since this cost increases as the
square of the number of images, this can become computationally very
demanding. Furthermore, rankings and falsifications based directly on
distances of scenario probability estimations are relative to the en-
semble of considered scenarios. In addition, small distances do not
imply that the scenario sections are “surrounding” or “containing” the
reference section in a space mapping the sections (see Fig. 9).

Each type of distance requires specific parameter choices. Wavelet-
based distances are parameterized by the type of wavelet used (Haar in
our case), by the number of decomposition levels (two here) and by the
number of bins (50 here). We tested (not shown) the sensitivity to
different wavelets (e.g., Daubechies, Coiflets, Symlets, Mexican Hat)
and obtained similar results. MPH-based distances are parameterized by
the pattern size and geometry ( ×5 5 pixels window), the number of
multigrid levels (three) and the number of most frequent patterns (30).
A number of three (Zhang et al., 2006; Straubhaar et al., 2011;
Straubhaar et al., 2013) or four (Strebelle, 2002; dell’Arciprete et al.,
2012) multigrid levels is commonly chosen to generate realizations
with tree- or list-based MPS algorithms to capture patterns at multiple
scales. The pattern geometry is a basic square which does not favor any
anisotropy. The pattern size is kept relatively small to ensure the pos-
sibility to encounter similar patterns between images. A smaller pattern
size ( ×3 3 pixels window) was tested, but led to similar results. The
number of most-frequent patterns is limited to 30 to avoid the com-
parison of single occurrences that are present only in one of the images.
Increasing the number of most-frequent patterns would increase un-
necessarily all distances. Decreasing the number of most-frequent pat-
terns would reduce the distances between images. Connectivity-based
distances are parameterized by investigated directions and lag width,
similarly to the computations of semi-variograms. Here we did not vary

these parameters, because the connectivity functions (Fig. 7) appears to
be well defined.

5.4. Perspectives

In the presented case-study, we threshold the reflection GPR sec-
tions as part of the data processing (to focus on the main aspects of the
reflectors) and limit our comparison to binary geophysical images. One
could also apply the proposed methodology to continuous images. It
would then be straightforward to compute a distance based on wavelet
decomposition. However, multiple-point histograms and connectivity
functions as defined in Section 2 are applicable to discrete domain
images only. One solution is to threshold the continuous images, as we
did here, in a reasonable number of classes, to retrieve and compare the
most important features from the images. Of course, this implies some
qualitative assessment of which features are the most important ones,
depending on the target of modeling. Another possibility is to adapt the
definition of the multiple-point histogram and of the connectivity
functions, such that they can be applied to continuous images. For in-
stance, we could rely on the definition of distances between continuous
patterns (Mariethoz et al., 2010) and on the identification of pattern
clusters to build a multiple-point histogram between continuous
images; the pattern clusters could be referred to as the histogram bins,
and a pattern could be assigned to the closest bin/cluster; it would
though depend on the number of clusters and how they are identified.
Regarding the connectivity-based distance, the simplest option would
be to define the connectivity as a function of the threshold
(Meerschman et al., 2013; Renard and Allard, 2013), as the probability
that two pixels are both above or both below a threshold.

While migrated GPR sections obtained from field data are somehow
affected by 3D geological heterogeneities, the simulation of GPR re-
flection sections is performed from 2D porosity sections and does not
account for 3D effects. The binary thresholding is a way to focus on the
reflections of interest and to reduce the impact caused by the inherent
limitations of the forward modeling, such as considering 3D effects
negligible, grid resolution, different coupling effect at the surface, non-
horizontal antennae at all times due to small changes in topography,
approximations of the propagated wave, estimation of the attenuation
with depth, etc. A consequence is that we loose some information about
porosity contrasts. Here, it allows to simulate GPR reflection sections
very efficiently, and thus to perform conceptual model uncertainty re-
duction. A way to account for 3D effects would be to perform full-wa-
veform GPR modeling over 3D porosity models. It would tremendously
increase the computational requirements, and consequently would
make conceptual model selection and falsification very costly.
However, characterizing the effects of such model simplifications could
improve (quantitatively) our understanding of GPR modeling errors and
allows us to mitigate potential bias effects.

Fig. 9. Mapping of the simulated and reference sections in the two first dimensions of the MDS space; (a) for the wavelet-based distance; (b) for the multiple-point
based distance; (c) for the connectivity-based distance.
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6. Conclusions

We have demonstrated how global distances (defined from wavelet
decomposition, multiple-point histograms and connectivity analysis)
between geophysical images allowed us to falsify seven out of nine
considered geological scenarios at the Tagliamento site. By considering
GPR sections from the Tagliamento aquifer, we find that cross-stratified
deposits and irregular property interfaces are important features to
reproduce. An underlying assumption of this work is that the results
obtained by model comparison with geophysical data are informative
for subsurface flow and transport. This assertion should be tested by
tracer tests, that are, up to date, not available at the Tagliamento site.
We have found that scenario falsification can be performed either by
direct analysis of the distances or by estimation of updated prob-
abilities. Direct analysis is faster, more intuitive and rely on the defi-
nition of a subjective acceptance threshold that is informed by the
magnitude of distances computed between several reference sections.
Computation of scenario probabilities using MDS to map geophysical
images as points in a lower dimensional space, followed by adaptive
kernel smoothing to estimate scenario probabilities, is more advanced
and requires more computing resources. The use of distance compar-
isons in geophysics also serves to select new parameter sets or to pro-
pose new geological conceptual models, in order to further close the
gap between simulated sections obtained from an initial set of scenarios
and the reference sections. This approach can be used for any type of
geophysical images, as long as the geophysical modeling and processing
step can be simulated in an effective and trustworthy way. The most
convenient distance of those considered is the wavelet-based distance,
which is the fastest to compute and it offers the best clustering of sce-
narios. The connectivity-based distance add further independent in-
formation and should be considered if structure connectivity is ex-
pected to have an impact on the prediction variables of interest. This
work proposes a way forward to use uninterpreted GPR data, in contrast
to hand-drawn geological deposit interpretation, for quantitative sub-
surface characterization.

Declaration of interests

None declared.

Acknowledgments

The authors thank two anonymous reviewers for their constructive
comments, and Céline Scheidt for sharing her MATLAB code to compute
updated probabilities. The other MATLAB codes and the synthetic data
used to test the proposed method are available upon request at guil-
laume.pirot@unil.ch (note that multiple-point histograms computa-
tions in that code require the Impala software, whose academic license
is available upon request at philippe.renard@unine.ch). The software
package to simulate the object-based model is freely available at gi-
thub.com/emanuelhuber/CBRDM. The GPR data are available upon
request at emanuel.huber@alumni.ethz.ch.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.jhydrol.2019.01.047.

References

Beres, M., Huggenberger, P., Green, A.G., Horstmeyer, H., 1999. Using two-and three-
dimensional georadar methods to characterize glaciofluvial architecture. Sed. Geol.
129, 1–24.

Boisvert, J.B., Pyrcz, M.J., Deutsch, C.V., 2010. Multiple point metrics to assess catego-
rical variable models. Nat. Resour. Res. 19, 165–175.

Carrera, J., Neuman, S.P., 1986. Estimation of aquifer parameters under transient and
steady state conditions: 1. Maximum likelihood method incorporating prior

information. Water Resour. Res. 22, 199–210.
Cox, T.F., Cox, M.A., 2000. Multidimensional Scaling. Chapman and Hall/CRC.
Daniels, D.J., 2004. Ground Penetrating Radar, vol. 1 United Kingdom, IET, London

second ed.
dell’Arciprete, D., Bersezio, R., Felletti, F., Giudici, M., Comunian, A., Renard, P., 2012.

Comparison of three geostatistical methods for hydrofacies simulation: a test on al-
luvial sediments. Hydrogeol. J. 20, 299–311.

Eaton, T.T., 2006. On the importance of geological heterogeneity for flow simulation.
Sed. Geol. 184, 187–201.

Ebeling, H., White, D., Rangarajan, F., 2006. ASMOOTH: a simple and efficient algorithm
for adaptive kernel smoothing of two-dimensional imaging data. Mon. Not. R. Astron.
Soc. 368, 65–73. https://doi.org/10.1111/j.1365-2966.2006.10135.x.

Emery, X., Lantuéjoul, C., 2006. Tbsim: a computer program for conditional simulation of
three-dimensional gaussian random fields via the turning bands method. Comput.
Geosci. 32, 1615–1628.

Ferré, T., 2017. Revisiting the relationship between data, models, and decision-making.
Groundwater 55, 604–614.

Gómez-Hernández, J., Wen, X., 1998. To be or not to be multi-Gaussian? A reflection on
stochastic hydrogeology. Adv. Water Resour. 21, 47–61.

Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A transformation for ordering
multispectral data in terms of image quality with implications for noise removal. IEEE
Trans. Geosci. Remote Sens. 26, 65–74.

Grimm, R.E., Heggy, E., Clifford, S., Dinwiddie, C., McGinnis, R., Farrell, D., 2006.
Absorption and scattering in ground-penetrating radar: Analysis of the bishop tuff. J.
Geophys. Res.: Planets 111, E06S02. https://doi.org/10.1029/2005JE002619.
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005JE002619.

Haar, A., 1910. Zur theorie der orthogonalen funktionensysteme. Math. Ann. 69,
331–371. https://doi.org/10.1007/BF01456326.

Hermans, T., Nguyen, F., Caers, J., 2015. Uncertainty in training image-based inversion of
hydraulic head data constrained to ERT data: workflow and case study. Water Resour.
Res. 51, 5332–5352.

Højberg, A., Refsgaard, J., 2005. Model uncertainty-parameter uncertainty versus con-
ceptual models. Water Sci. Technol. 52, 177–186.

Hubbard, S.S., Rubin, Y., 2005. volume 50 of water science and technology library. In:
Introduction to Hydrogeophysics. Springer, Netherlands, Dordrecht, pp. 3–21.
https://doi.org/10.1007/1-4020-3102-5_1.

Huber, E., 2015. Incorporating sedimentological observations, hydrogeophysics and
conceptual knowledge to constrain 3D numerical heterogeneity models of alluvial
systems. University of Basel (Ph.D. thesis).

Huber, E., Caers, J., Huggenberger, P., 2016. A 3D object-based model to simulate highly-
heterogeneous, coarse, braided river deposits. In: AGU Fall Meeting Abstracts.

Huber, E., Hans, G., 2017. RGPR: a free and open-source software package to process and
visualise ground-penetrating radar (GPR) data.

Huber, E., Huggenberger, P., 2015. Morphological perspective on the sedimentary char-
acteristics of a coarse, braided reach: Tagliamento River (NE Italy). Geomorphology
248, 111–124.

Huber, E., Huggenberger, P., 2016. Subsurface flow mixing in coarse, braided river de-
posits. Hydrol. Earth Syst. Sci 20, 2035–2046.

Huggenberger, P., Regli, C., 2006. A sedimentological model to characterize braided river
deposits for hydrogeological applications. Braided rivers: Process, deposits, ecology,
and management. Blackwell Publ., Oxford, UK.A sedimentological model to char-
acterize braided river deposits for hydrogeological applications, pp. 51–74.

Irving, J., Scholer, M., Holliger, K., 2010. Advances in near-surface seismology and
ground-penetrating radar. In: In: Miller, R.D., Bradford, J.H., Holliger, K. (Eds.),
Society of Exploration Geophysicists, American Geophysical Union, Environmental
and Engineering Geophysical Society, vol. 5. pp. 77–96.

Jussel, P., Stauffer, F., Dracos, T., 1994. Transport modeling in heterogeneous aquifers: 1.
Statistical description and numerical generation of gravel deposits. Water Resour.
Res. 30, 1803–1817.

Kass, R.E., Raftery, A.E., 1995. Bayes factors. J. Am. Stat. Assoc. 90, 773–795.
Kruse, S.E., Jol, H.M., 2003. Amplitude analysis of repetitive GPR reflections on a Lake

Bonneville delta, Utah. Geological Society, London, Special Publications 211,
287–298. https://doi.org/10.1144/GSL.SP.2001.211.01.23.

Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Stat. 79–86.
Linde, N., 2014. Falsification and corroboration of conceptual hydrological models using

geophysical data. Wiley Interdisciplinary Reviews: Water 1, 151–171. https://doi.
org/10.1002/wat2.1011.

Mallat, S.G., 1989. A theory for multiresolution signal decomposition: the wavelet re-
presentation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693. https://doi.org/
10.1109/34.192463.

Mariethoz, G., Renard, P., Straubhaar, J., 2010. The Direct Sampling method to perform
multiple-point geostatistical simulations. Water Resour. Res. 46, W11536.

Matheron, G., 1963. Principles of geostatistics. Econ. Geol. 58, 1246–1266.
Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M., Renard, P.,

2013. A practical guide to performing multiple-point statistical simulations with the
direct sampling algorithm. Comput. Geosci. 52, 307–324.

Panagiotakis, C., Kokinou, E., Sarris, A., 2011. Curvilinear structure enhancement and
detection in geophysical images. IEEE Trans. Geosci. Remote Sens. 49, 2040–2048.

Park, H., Scheidt, C., Fenwick, D., Boucher, A., Caers, J., 2013. History matching and
uncertainty quantification of facies models with multiple geological interpretations.
Comput. Geosci. 17, 609–621.

Pirot, G., Huber, E., Lochbühler, T., Renard, P., Scheidt, C., Straubhaar, J., 2014. Identify
model scale parameters with GPR data. In: 10th geoEnv conference, Paris, France.

Pirot, G., Renard, P., Huber, E., Straubhaar, J., Huggenberger, P., 2015a. Influence of
conceptual model uncertainty on contaminant transport forecasting in braided river
aquifers. J. Hydrol. 531, 124–141.

G. Pirot, et al. Journal of Hydrology 571 (2019) 254–264

263

https://doi.org/10.1016/j.jhydrol.2019.01.047
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0005
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0005
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0005
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0010
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0010
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0015
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0015
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0015
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0020
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0025
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0025
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0030
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0030
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0030
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0035
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0035
https://doi.org/10.1111/j.1365-2966.2006.10135.x
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0045
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0045
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0045
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0050
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0050
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0055
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0055
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0060
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0060
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0060
https://doi.org/10.1029/2005JE002619
https://doi.org/10.1029/2005JE002619
https://doi.org/10.1007/BF01456326
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0075
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0075
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0075
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0080
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0080
https://doi.org/10.1007/1-4020-3102-5_1
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0090
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0090
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0090
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0105
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0105
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0105
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0110
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0110
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0120
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0120
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0120
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0120
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0125
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0125
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0125
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0130
https://doi.org/10.1144/GSL.SP.2001.211.01.23
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0140
https://doi.org/10.1002/wat2.1011
https://doi.org/10.1002/wat2.1011
https://doi.org/10.1109/34.192463
https://doi.org/10.1109/34.192463
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0155
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0155
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0160
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0165
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0165
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0165
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0170
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0170
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0175
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0175
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0175
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0185
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0185
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0185


Pirot, G., Straubhaar, J., Renard, P., 2014b. Simulation of braided river elevation model
time series with multiple-point statistics. Geomorphology 214, 148–156.

Pirot, G., Straubhaar, J., Renard, P., 2015b. A pseudo genetic model of coarse braided-
river deposits. Water Resour. Res. 51, 9595–9611.

Pride, S., 1994. Governing equations for the coupled electromagnetics and acoustics of
porous media. Phys. Rev. B 50, 15678–15696.

Rajagopalan, S., Milligan, P., 1994. Image enhancement of aeromagnetic data using au-
tomatic gain control. Explor. Geophys. 25, 173–178.

Renard, P., Allard, D., 2013. Connectivity metrics for subsurface flow and transport. Adv.
Water Resour. 51, 168–196.

Rongier, G., Collon-Drouaillet, P., Renard, P., Straubhaar, J., Sausse, J., 2013.
Reproduction assessment of connected geobodies in multiple-point simulation. In:
GOCAD Meeting Abstracts, p. 0561.

Scheidt, C., Caers, J., 2009. Representing spatial uncertainty using distances and kernels.
Math. Geosci. 41, 397–419.

Scheidt, C., Jeong, C., Mukerji, T., Caers, J., 2015. Probabilistic falsification of prior
geologic uncertainty with seismic amplitude data: application to a turbidite reservoir
case. Geophysics 80 M89-M12.

Schmelzbach, C., Huber, E., 2015. Efficient deconvolution of ground-penetrating radar
data. IEEE Trans. Geosci. Remote Sens. 53, 5209–5217.

Schöniger, A., Wöhling, T., Samaniego, L., Nowak, W., 2014. Model selection on solid
ground: rigorous comparison of nine ways to evaluate Bayesian model evidence.

Water Resour. Res. 50, 9484–9513.
Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R., 2000. Content-based image

retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22,
1349–1380.

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., Besson, O., 2011. An improved
parallel multiple-point algorithm using a list approach. Math. Geosci. 43, 305–328.

Straubhaar, J., Walgenwitz, A., Renard, P., 2013. Parallel multiple-point statistics algo-
rithm based on list and tree structures. Math. Geosci. 45, 131–147.

Strebelle, S., 2002. Conditional simulation of complex geological structures using mul-
tiple-point statistics. Math. Geol. 34, 1–21.

Suzuki, S., Caers, J., 2008. A distance-based prior model parameterization for con-
straining solutions of spatial inverse problems. Math. Geosci. 40, 445–469.

Tran, T.T., 1994. Improving variogram reproduction on dense simulation grids. Comput.
Geosci. 20, 1161–1168.

Ward, J., Tockner, K., Edwards, P., Kollmann, J., Bretschko, G., Gurnell, A., Petts, E.,
Rossaro, B., et al., 1999. A reference river system for the alps: the fiume tagliamento.
Regulated Rivers 15, 63–75.

Zhang, T., Switzer, P., Journel, A., 2006. Filter-based classification of training image
patterns for spatial simulation. Math. Geol. 38, 63–80.

Zinn, B., Harvey, C.F., 2003. When good statistical models of aquifer heterogeneity go
bad: a comparison of flow, dispersion, and mass transfer in connected and multi-
variate Gaussian hydraulic conductivity fields. Water Resour. Res. 39, 1051.

G. Pirot, et al. Journal of Hydrology 571 (2019) 254–264

264

http://refhub.elsevier.com/S0022-1694(19)30114-3/h0190
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0190
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0195
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0195
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0200
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0200
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0205
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0205
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0210
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0210
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0220
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0220
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0225
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0225
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0225
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0230
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0230
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0235
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0235
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0235
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0240
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0240
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0240
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0245
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0245
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0250
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0250
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0255
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0255
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0260
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0260
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0265
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0265
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0270
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0270
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0270
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0275
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0275
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0280
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0280
http://refhub.elsevier.com/S0022-1694(19)30114-3/h0280

	Reduction of conceptual model uncertainty using ground-penetrating radar profiles: Field-demonstration for a braided-river aquifer
	Introduction
	Distances between geophysical images and estimation of scenario probabilities
	Wavelet decomposition
	Multiple-point histogram
	Connectivity measure
	Estimation of scenario probabilities

	Field application and GPR modeling
	Study site and geological conceptual models
	GPR data acquisition and processing
	From aquifer porosity models to GPR reflection sections

	Results
	Discussion
	Geological scenario falsification at the Tagliamento study site
	Comparison of distance measures
	Influence of ranking method and parameter choices
	Perspectives

	Conclusions
	Declaration of interests
	Acknowledgments
	Supplementary data
	References




