Quantifying scour depth in a straightened gravel-bed river with ground-penetrating radar

Emanuel Huber
Birte Anders
Peter Huggenberger

Applied and Environmental Geology University of Basel - Switzerland

Alpine Rhine River

Switzerland

- heavily channelized in the 19th and 20th centuries
- flood protection measures

Alpine Rhine River

Switzerland

alternate bars \rightarrow

Alternate bars

appears under specific conditions

river revitalization

Alternate bars

- appears under specific conditions
- associated with scours (pool)

Alpine Rhine River at low discharge

Alternate bars

associated with **scours** (pool)

← laboratory experiment

- bathymetric surveys may underestimate scour depth
- bar and scour migrate downstream

riverbank erosion/collapse during flood events

Alpine Rhine River, 1927

Alpine Rhine River, 1987

maximal scour depth

= critical parameter for flood embankment design

Research questions

- 1. scour below scour?
- 2. scours location?
- 3. maximal scour depth?

Preliminary experiment

 topographic survey (Total Station)

Preliminary experiment

- topographic survey (Total Station)
- GPR survey
 (100 MHz antennas,
 PulseEkko Pro)
- CMP

GPR processing

TABLE I. GPR PROCESSING STEPS				
Processing step	Description/literature			
DC-shift removal	Remove constant amplitude shift.			
First-breaks picking and time-zero adjustment	E.g., [16].			
Constant offset correction	Compensate for the 1-m-offset between transmitter and receiver antennae (the acquisition time of the traces is converted into the corresponding acquisition time for a mono-static antenna GPR).			
Low-frequency trend removal (dewow)	Low-frequency trend estimated with a Hampel filter (e.g., [17]).			
Band-pass frequency filtering	Remove the low and high noisy frequencies (corner frequencies: 5, 25, 150, 250 MHz).			
Spherical and exponential amplitude corrections	Compensate for geometric spreading and attenuation of the GPR signal (e.g., [18-19]).			
2D median filtering	Applied over a 3-by-3 neighborhood to remove high-frequency noise.			
Topographic Kirchhoff migration	Topographic Kirchhoff migration [20-21] with constant GPR wave velocity (0.1 m/ns) that leads to results that are accurate enough for the purpose of the study.			

Automatic Gain Control Adaptative amplitude correction (e.g., [22]).

- GPR processing
- interpretation
 - continuity of the dominant reflections

- GPR processing
- interpretation
 - continuity of the dominant reflections

- GPR processing
- interpretation
 - continuity of the dominant reflections
 - angular unconformity

- GPR processing
- interpretation
 - continuity of the dominant reflections
 - angular unconformity

- GPR processing
- interpretation
 - continuity of the dominant reflections
 - angular unconformity

- GPR processing
- interpretation
 - continuity of the dominant reflections
 - angular unconformity
 - only non-ambiguous structures

- GPR processing
- interpretation
 - continuity of the dominant reflections
 - angular unconformity
 - only non-ambiguous structures
- surface interpolation in GOCAD

- up to 2 m thick
- foreset → migration direction
- base = armour layer
- two superimposed bar?

Results - scour

Results - scour

- partially imaged (100 m \times 30 m \times 4.5 m)
- river bed elevation difference = 7.5 m
 (vs. 2.5 4 m from bathymetric surveys)
- erosion surface starts 10 15 m upstream the bar
- oinon-like internal structure

Conclusion

- do "less" to get more
- surface morphology vs. sedimentology
- scour partially imaged
- scour depth > 4.5 m

- Future research:
 - full imaging (GPR bathymetry)
 - statistical significance
 - capture the dynamics of scour formation (link discharge – scour size)
 - impact scour on subsurface flow and biology

Literature

Bertoldi, W., and M. Tubino (2005), Bed and bank evolution of bifurcating channels, Water Resour. Res., 41, W07001, doi:10.1029/2004WR003333

Marti, C. and Bezzola, G. R. (2009). Braided Gravel-Bed Rivers with a Limited Width: Preliminary Results of a Hydraulic Model Study. In Fluvial Sedimentology VII (eds I. Jarvis, M. D. Blum, S. B. Marriott and S. F. Leclair). doi:10.1002/9781444304350.ch8